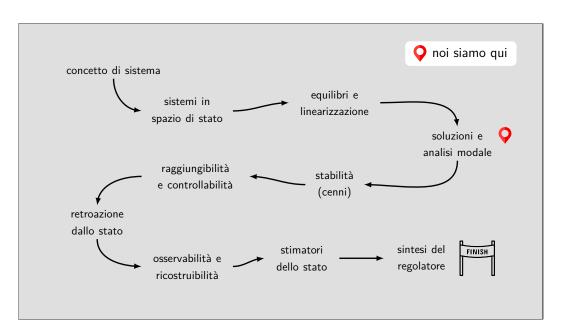
Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 9: Modi di un sistema lineare, risposta libera e forzata (tempo continuo)

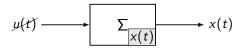
Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2021-2022



In questa lezione

- ▶ Analisi modale ed evoluzione libera di un sistema lineare a t.c.
- ▶ Evoluzione complessiva di un sistema lineare a t.c.
- ▶ Equivalenza algebrica e matrice di trasferimento

Soluzioni di un sistema lineare autonomo?

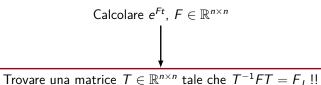


Caso vettoriale $x(t) = y(t) \in \mathbb{R}^n$

$$\dot{x}(t) = Fx(t), \qquad x(0) = x_0$$

$$x(t)=e^{Ft}x_0$$

Come calcolare e^{Ft} ?



G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)

14 Marzo 2022

Calcolo di e^{Ft} tramite Jordan

1.
$$F = TF_JT^{-1} \implies e^{Ft} = Te^{F_J}T^{-1}$$

2.
$$F_J = \begin{bmatrix} J_{\lambda_1} & 0 & \cdots & 0 \\ \hline 0 & J_{\lambda_2} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & J_{\lambda_k} \end{bmatrix} \implies e^{F_J t} = \begin{bmatrix} e^{J_{\lambda_1} t} & 0 & \cdots & 0 \\ \hline 0 & e^{J_{\lambda_2} t} & \ddots & \vdots \\ \hline \vdots & \ddots & \ddots & 0 \\ \hline 0 & \cdots & 0 & e^{J_{\lambda_k} t} \end{bmatrix}$$

$$\mathbf{3.} \ J_{\lambda_i} = \begin{bmatrix} J_{\lambda_i,1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_i,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{\lambda_i,g_i} \end{bmatrix} \quad \Longrightarrow \quad \mathbf{e}^{J_{\lambda_i}t} = \begin{bmatrix} \frac{e^{J_{\lambda_i,1}t}}{0} & 0 & \cdots & 0 \\ 0 & e^{J_{\lambda_i,2}t} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & e^{J_{\lambda_i,g_i}t} \end{bmatrix}$$

G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)

Calcolo di e^{Ft} tramite Jordan

$$\textbf{4.} \ J_{\lambda_{i},j} = \begin{bmatrix} \lambda_{i} & 1 & 0 & \cdots & 0 \\ 0 & \lambda_{i} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & \lambda_{i} \end{bmatrix} \in \mathbb{R}^{r_{ij} \times r_{ij}} \Rightarrow e^{J_{\lambda_{i},j}t} = \begin{bmatrix} e^{\lambda_{i}t} & te^{\lambda_{i}t} & \frac{t^{2}}{2}e^{\lambda_{i}t} & \cdots & \frac{t^{r_{ij}-1}}{(r_{ij}-1)!}e^{\lambda_{i}t} \\ 0 & e^{\lambda_{i}t} & te^{\lambda_{i}t} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \frac{t^{2}}{2}e^{\lambda_{i}t} \\ \vdots & \ddots & \ddots & \ddots & te^{\lambda_{i}t} \\ 0 & \cdots & \cdots & 0 & e^{\lambda_{i}t} \end{bmatrix}$$

$$e^{\lambda_i t}$$
, $t e^{\lambda_i t}$, $\frac{t^2}{2} e^{\lambda_i t}$, ..., $\frac{t^{r_{ij}-1}}{(r_{ij}-1)!} e^{\lambda_i t} = \mathsf{modi}$ elementari del sistema

G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)

14 Marzo 2022

Modi elementari: osservazioni

$$e^{\lambda_i t}$$
, $t e^{\lambda_i t}$, $\frac{t^2}{2} e^{\lambda_i t}$, ..., $\frac{t^{r_{ij}-1}}{(r_{ij}-1)!} e^{\lambda_i t} = ext{modi elementari del sistema}$

- **2.** F diagonalizzabile \implies modi elementari = $e^{\lambda_i t}$ (esponenziali puri)

1. Numero di modi distinti associati a $\lambda_i = \dim$ del più grande miniblocco di J_{λ_i} **3.** $\lambda \in \mathbb{C}$ autovalore $\Rightarrow \bar{\lambda}$ autovalore \Rightarrow modi reali $t^k e^{\sigma t} \cos(\omega t)$, $t^k e^{\sigma t} \sin(\omega t)$ Lez. 9: Modi, risposta libera e forzata (t.c.) G. Baggio 14 Marzo 2022

Evoluzione libera

$$\dot{x}(t) = Fx(t) + Gu(t), \quad x(0) = x_0$$

$$y(t) = Hx(t) + Ju(t)$$

$$y(t) = y_{\ell}(t) = He^{Ft}x_0 = \sum_{i,j} t^j e^{\lambda_i t} v_{ij}$$

= combinazione lineare di vettori contenenti i modi elementari!

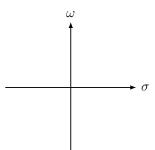
G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)

14 Marzo 2022

Carattere dei modi elementari

$$\lambda_i \in \mathbb{C}: t^{k_i} e^{\lambda_i t} = t^{k_i} e^{(\sigma_i + i\omega_i)t} = t^{k_i} e^{\sigma_i t} (\cos(\omega_i t) + i \sin(\omega_i t))$$

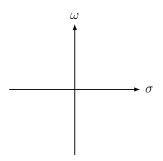


G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)

Carattere dei modi elementari

$$\lambda_i \in \mathbb{C}: t^{k_i}e^{\lambda_i t} = t^{k_i}e^{(\sigma_i + i\omega_i)t} = t^{k_i}e^{\sigma_i t}(\cos(\omega_i t) + i\sin(\omega_i t))$$



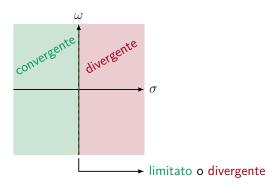
G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)

14 Marzo 2022

Carattere dei modi elementari

$$\lambda_i \in \mathbb{C}: t^{k_i}e^{\lambda_i t} = t^{k_i}e^{(\sigma_i + i\omega_i)t} = t^{k_i}e^{\sigma_i t}(\cos(\omega_i t) + i\sin(\omega_i t))$$



G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)

Comportamento asintotico

 $F \in \mathbb{R}^{n \times n}$ con autovalori $\{\lambda_i\}_{i=1}^k$

$$\Re[\lambda_i] < 0, \forall i \qquad \iff \qquad e^{Ft} \xrightarrow{t \to \infty} 0 \implies y(t) = He^{Ft} x_0 \xrightarrow{t \to \infty} 0$$

$$\Re[\lambda_i] \le 0, \ \forall i \ e$$
 $\nu_i = g_i \ \text{se} \ \Re[\lambda_i] = 0$
 $\iff e^{Ft} \ \text{limitata} \ \Rightarrow \ y(t) = He^{Ft} x_0 \ \text{limitata}$

$$\exists \lambda_i \text{ tale che } \Re[\lambda_i] > 0$$

o $\Re[\lambda_i] = 0$ e $\nu_i > g_i$ \iff e^{Ft} non limitata $\Rightarrow y(t) = He^{Ft}x_0$?

G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)

14 Marzo 2022

Evoluzione complessiva (libera + forzata)

$$\dot{x}(t) = Fx(t) + Gu(t), \quad x(0) = x_0$$

$$y(t) = Hx(t) + Ju(t)$$

$$x(t) = x_{\ell}(t) + x_{f}(t), \qquad x_{\ell}(t) = e^{Ft}x_{0}, \qquad x_{f}(t) ??$$

$$y(t) = y_{\ell}(t) + y_{f}(t), \qquad y_{\ell}(t) = He^{Ft}x_{0}, \qquad y_{f}(t) ??$$

G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)

Evoluzione complessiva (libera + forzata)

$$\dot{x}(t) = Fx(t) + Gu(t), \qquad x(0) = x_0$$

$$y(t) = Hx(t) + Ju(t)$$

$$x(t) = \underbrace{e^{Ft}x_0}_{=x_{\ell}(t)} + \underbrace{\int_0^t e^{F(t-\tau)}Gu(\tau)\,\mathrm{d}\tau}_{=x_{\ell}(t)}$$

$$x(t) = \underbrace{e^{Ft}x_0}_{=x_{\ell}(t)} + \underbrace{\int_0^t e^{F(t-\tau)}Gu(\tau)\,d\tau}_{=x_{f}(t)}$$

$$y(t) = \underbrace{He^{Ft}x_0}_{=y_{\ell}(t)} + \underbrace{\int_0^t [He^{F(t-\tau)}G + J\delta(t-\tau)]u(\tau)\,d\tau}_{=y_{f}(t)}$$

$$w(t) = He^{Ft}G + J\delta(t) =$$
risposta impulsiva

G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)

14 Marzo 2022

Evoluzione complessiva con Laplace

$$sX(s) - x_0 = FX(s) + GU(s)$$

$$V(s) \triangleq \mathcal{L}[v(t)] = \int_{0^-}^{\infty} v(t)e^{-st}dt$$

$$Y(s) = HX(s) + JU(s)$$

$$X(s) = \underbrace{(sI - F)^{-1}x_0}_{=X_f(s)} + \underbrace{(sI - F)^{-1}GU(s)}_{=X_f(s)}$$

$$Y(s) = \underbrace{H(sI - F)^{-1}x_0}_{=Y_{\ell}(s)} + \underbrace{[H(sI - F)^{-1}G + J]U(s)}_{=Y_{f}(s)}$$

G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)

Equivalenze dominio temporale/Laplace

- 1. $W(s) = \mathcal{L}[w(t)] = H(sI F)^{-1}G + J = \text{matrice di trasferimento}$
- **2.** $\mathcal{L}[e^{Ft}] = (sl F)^{-1} = \text{metodo alternativo per calcolare } e^{Ft}$!!

G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)

14 Marzo 2022

Equivalenza algebrica

$$\dot{x}(t) = Fx(t) + Gu(t), \qquad x(0) = x_0$$

$$y(t) = Hx(t) + Ju(t)$$

Sia $z \triangleq \mathcal{T}^{-1}x$ dove $\mathcal{T} \in \mathbb{R}^{n \times n}$ rappresenta una matrice di cambio di base

Equazioni del sistema espresse nella nuova base?

Equivalenza algebrica

$$\dot{z}(t) = T^{-1}FTz(t) + T^{-1}Gu(t), \quad z(0) = T^{-1}x_0$$

$$y(t) = HTz(t) + Ju(t)$$

$$(F, G, H, J) \xrightarrow{z=T^{-1}x} (F' = T^{-1}FT, G' = T^{-1}G, H' = HT, J' = J)$$

Matrice di trasferimento nella nuova base?

$$W'(s) = H'(sI - F')^{-1}G' + J' = H(sI - F)^{-1}G + J = W(s) !!$$

G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)

14 Marzo 2022

Poli della matrice di trasferimento

$$W(s) = H(sI - F)^{-1}G + J = egin{bmatrix} W_{11}(s) & \cdots & W_{1m}(s) \ dots & \ddots & dots \ W_{p1}(s) & \cdots & W_{pm}(s) \end{bmatrix}$$

$$W_{ij}(s) = rac{N_{ij}(s)}{D_{ii}(s)} = ext{funzioni razionali proprie} \left(ext{deg } D_{ij}(s) \geq ext{deg } N_{ij}(s)
ight)$$

N.B. $p \in \mathbb{C}$ è un polo di W(s) se $p \in \mathbb{C}$ è un polo di almeno un $W_{ij}(s)$

$$(sl-F)^{-1} = {\operatorname{adj}(sl-F) \over \operatorname{det}(sl-F)} \implies \{\operatorname{poli}\ W(s)\} \subseteq \{\operatorname{autovalori}\ F\}$$

G. Baggio

Lez. 9: Modi, risposta libera e forzata (t.c.)