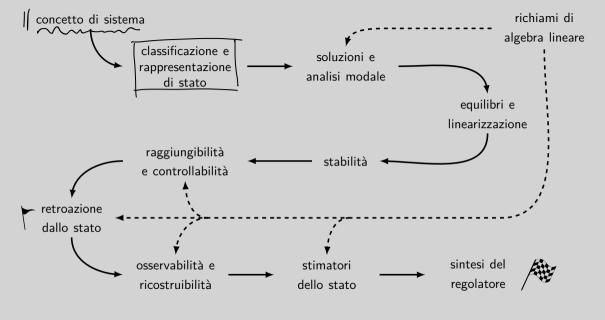
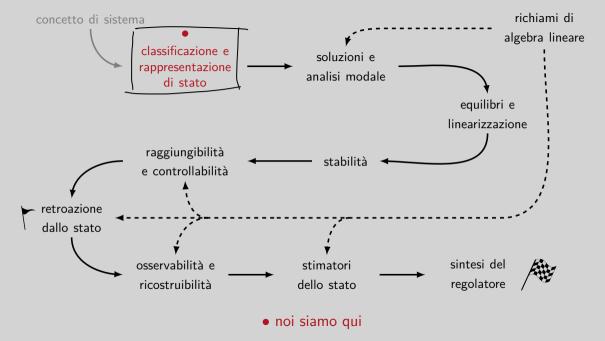
Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 2: Classificazione e Rappresentazione di Sistemi

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020





In questa lezione

- O. DEFINIZIONE DI SISTEMA
- ▶ Classificazione di sistemi

De Rappresentazione di sistemi → Rappresentazione di Mato
o interna
tempo-invarianti

• Sistemi lineari in spazio di stato

LTI

▶ Esempi di sistemi a tempo continuo

▶ Esempi di sistemi a tempo discreto

In questa lezione

▶ Rappresentazione di sistemi

▶ Sistemi lineari in spazio di stato

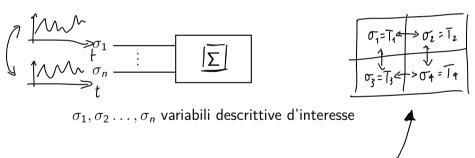
▶ Esempi di sistemi a tempo continuo

▶ Esempi di sistemi a tempo discreto

Sistema

Es: circuiti eletrici Es: mercati finanziari circuiti meccanici suriti/laureati

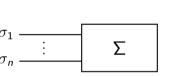
Definizione (sistema): Un qualunque oggetto fisico o artificiale il cui comportamento temporale è descritto da un insieme di variabili che interagiscono tra di loro.



Esempio: $\Sigma = \text{appartamento}, \ \sigma_1 = \text{temp. cucina}, \ \sigma_2 = \text{temp. soggiorno}, \dots$

Sistema

Definizione (sistema): Un qualunque oggetto fisico o artificiale il cui comportamento temporale è descritto da un insieme di variabili che interagiscono tra di loro.



$$\sum : f(\sigma_1, ..., \sigma_n) = 0$$

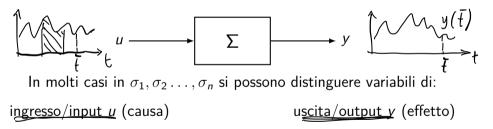
$$\downarrow_{\sigma_1}(t) = f_1(\sigma_1, ..., \sigma_n)$$

 $\sigma_1, \sigma_2, \ldots, \sigma_n$ variabili descrittive d'interesse

 $\Sigma = \text{Modello matematico}$ che descrive la relazione tra $\sigma_1, \sigma_2 \dots, \sigma_n$

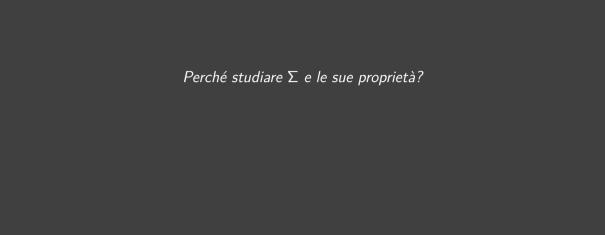
Sistema

Definizione (sistema): Un qualunque oggetto fisico o artificiale il cui comportamento temporale è descritto da un insieme di variabili che interagiscono tra di loro.



Esempio: automobile: u = pedale acc. / sterzo, y = posizione / velocità veicolo motore elettrico: u = tensione / corrente armatura, y = posizione / velocità rotore

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019 7 / 39



Perché studiare Σ e le sue proprietà? CONTROLLO ANALISÍ

Capire il funzionamento di Σ per poi (eventualmente) *controllarlo*!

Perché studiare Σ e le sue proprietà?

Ma perché usare la matematica?

Capire il funzionamento di Σ per poi (eventualmente) *controllarlo*!

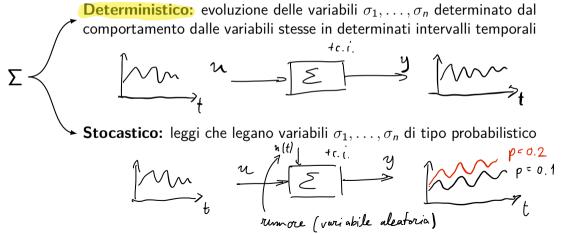
Perché studiare Σ e le sue proprietà?

Capire il funzionamento di Σ per poi (eventualmente) *controllarlo*!

Ma perché usare la matematica?

Fornisce strumenti che permettono di descrivere e analizzare in maniera *quantitativa* il comportamento di Σ

$$i_{\pi} \uparrow \begin{cases} \uparrow \\ \downarrow \\ - \end{cases}$$
 $V_{R} = R i_{\pi}$ $[V]$ $[A]$



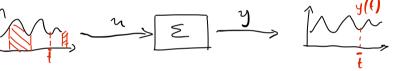
Giacomo Baggio

Classificazione dei sistemi
$$\lambda_n \downarrow \begin{cases} \int_{-\infty}^{\infty} V_{R}(t) = R \lambda_{R}(t) \\ V_{R}(t) = R \lambda_{R}(t) \end{cases}$$

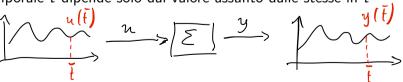
$$V_{R}(t) = R \lambda_{R}(t)$$

Discussione dei sistemi $\lambda_n \downarrow \begin{cases} \int_{-\infty}^{\infty} V_{R}(t) = C \frac{dV_{R}(t)}{dt} \\ V_{R}(t) = C \frac{dV_{R}(t)}{dt} \end{cases}$

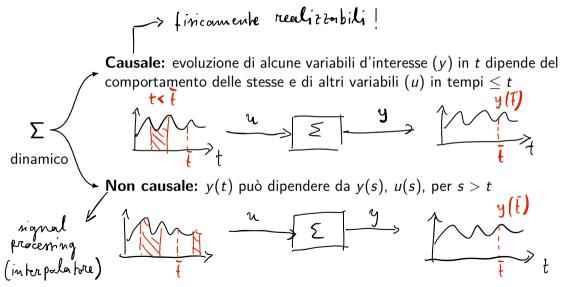
Dinamico: valore assunto dalle variabili $\sigma_1, \ldots, \sigma_n$ ad un certo istante temporale t dipende dall'evoluzione delle stesse in determinati intervalli



Statico: valore assunto dalle variabili $\sigma_1, \ldots, \sigma_n$ ad un certo istante temporale t dipende solo dal valore assunto dalle stesse in t



Giacomo Baggio IMC-TdS-1920: Lez 2



Giacomo Baggio

$$R(t)$$
inv. $t. vo$

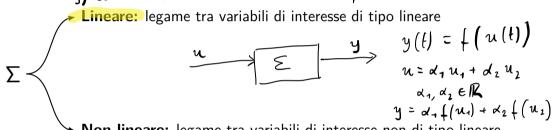
 $R \ge R(t) \ge V_R(t) = R(t) i_R(t)$ t. inv. t. vov. (invecediamento componenti)

Tempo invariante: legame tra variabili di interesse indipendente da *t* **Tempo variante:** legame tra variabili di interesse dipendente da t

$$\frac{n}{2} > \frac{y}{2} \qquad y(t) = \left(\left(\frac{n(t)}{t} \right) \right)$$

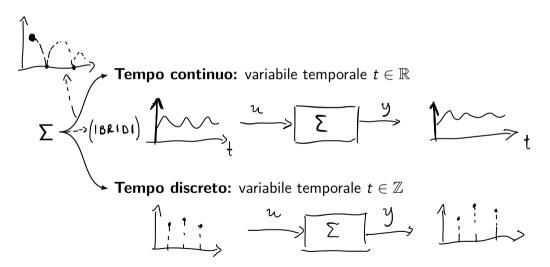
IMC-TdS-1920: Lez. 2 Giacomo Baggio October 7, 2019 12 / 39

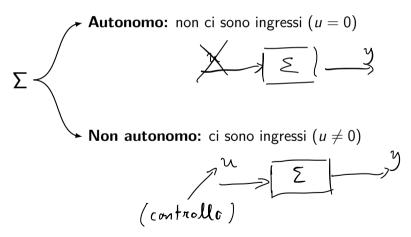
- 1) molti sistemi ingegneristici sono lineari (circuiti eletrici/mecc.)
- 2) Linearizzazione
- 3) corratterizzazione amalitica del comportonmente del sistema



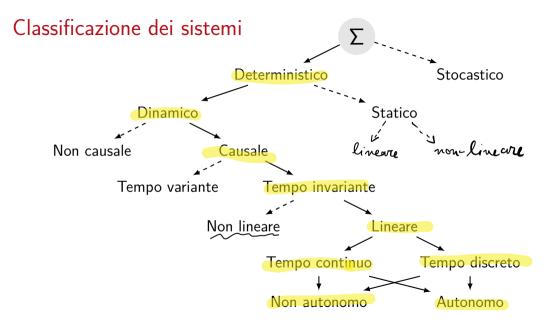
Non lineare: legame tra variabili di interesse non di tipo lineare

13 / 39





Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019 15 / 39



In questa lezione

▶ Classificazione di sistemi

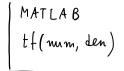
 $\, \rhd \, \mathsf{Rappresentazione} \,\, \mathsf{di} \,\, \mathsf{sistemi} \,\,$

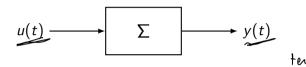
▶ Sistemi lineari in spazio di stato

▶ Esempi di sistemi a tempo continuo

▶ Esempi di sistemi a tempo discreto

Rappresentazione esterna o I/O (inequesse/uscites) | MATLAB | tf(mm, den)





Tempo continuo: $(y^{(n)}(t),\ldots,\dot{y}(t),y(t),u^{(m)}(t),\ldots,\dot{u}(t),u(t),\underline{\dot{t}})=0+\text{c.i.}$

 Σ lineare tempo invariante: F.d.T. (Laplace) $(G(s) \neq Y(s)/U(s)$

Tempo discreto: $h(y(t-t_n), \dots, y(t-1), y(t), u(t-t_m), \dots, u(t-1), u(t), t) = 0 + \text{c.i.}$

 Σ lineare tempo invariante: F.d.T. (Zeta) G(z) = Y(z)/U(z)

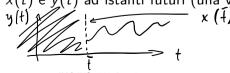
Rappresentazione interna o di stato



$$\mathbb{R}^n \ni x(t) = \text{(vettore di) variabili di stato} \quad \underline{\text{(memoria interna!)}}$$

$$\text{L.} \quad \text{"repara" il panato dal futuro di } \Sigma$$

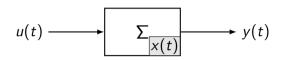
Proprietà di separazione: x(t) fornisce tutta l'informazione sulla storia passata di Σ necessaria per valutare x(t) e y(t) ad istanti futuri (una volta noto u(t)).



19 / 39

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019

Rappresentazione interna o di stato



$$x(t) = \text{(vettore di) variabili di stato} \qquad \qquad (memoria interna!) \\ \text{din ormica (eq. diff. 1° ord.)}$$

$$\text{Tempo continuo:} \qquad \qquad \begin{vmatrix} \dot{x}(t) = f(x(t), u(t), t) \\ y(t) = f(x(t), u(t), t) \end{vmatrix} \qquad x(t_0) = x_0$$

$$f = \text{mappa di transizione di stato} \qquad h = \text{mappa di uscita}$$

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019

20 / 39

1) Rappresentatione compatta Rappresentazione interna o di stato 2) MIMO 3) vomfaggji computazionali

$$x(t)=$$
 (vettore di) variabili di stato $\ (memoria\ interna!)$ eq. $\ \ u(t)=\ different$ $u(t)=\ (x(t),u(t),t)$ $u(t)=\ x(t)=\ (x(t),u(t),t)$

f = mappa di transizione di stato

h = mappa di uscita

Giacomo Baggio

IMC-TdS-1920: Lez. 2

October 7, 2019

In questa lezione

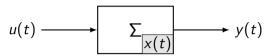
▶ Classificazione di sistemi

▶ Rappresentazione di sistemi

▷ Sistemi lineari in spazio di stato

▶ Esempi di sistemi a tempo continuo

▶ Esempi di sistemi a tempo discreto



 Σ lineare e tempo invariante

$$x(t) \in \mathbb{R}^n$$
, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p$



 Σ lineare e tempo invariante

$$x(t) \in \mathbb{R}^n$$
, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p$

24 / 39

Tempo continuo:

$$\dot{x}(t) = Fx(t) + Gu(t)$$

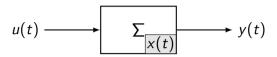
 $y(t) = Hx(t) + Ju(t)$ $x(t_0) = x_0$



 Σ lineare e tempo invariante $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p$

Tempo discreto:
$$\frac{x(t+1) = Fx(t) + Gu(t)}{y(t) = Hx(t) + Ju(t)} \qquad x(t_0) = x_0$$

25 / 39



$$\Sigma$$
 lineare e tempo invariante $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p$

26 / 39

Sovrapposizione degli effetti

x', y' = stato, uscita di Σ con stato iniziale x'_0 e ingresso u'_{-} x'', y'' = stato, uscita di Σ con stato iniziale x_0'' e ingresso $\underline{u''}$

$$x_0 = \alpha_1 x_0' + \alpha_2 x_0'', \ \underline{u} = \underline{u} \underline{u}' + \underline{u} \underline{u}'' \implies \underline{x} = \alpha_1 x' + \alpha_2 x'', \ \underline{y} = \alpha_1 y' + \alpha_2 \underline{y}''$$

In questa lezione

▶ Classificazione di sistemi

▶ Rappresentazione di sistemi

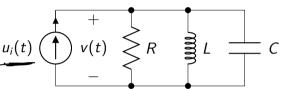
▶ Sistemi lineari in spazio di stato

▷ Esempi di sistemi a tempo continuo

▶ Esempi di sistemi a tempo discreto

Circuito RLC

28 / 39

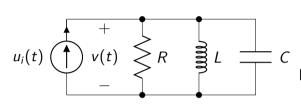


$$u_i(t) = \text{input}, \ v(t) = \text{output}$$

Rappresentazione (esterna ed) interna?

Circuito RLC

28 / 39



$$u_i(t) = \text{input}, v(t) = \text{output}$$

Rappresentazione (esterna ed) interna?

Rappresentazione esterna

$$\ddot{v} + \frac{1}{RC}\dot{v} + \frac{1}{LC}v - \frac{1}{C}\dot{u}_i = 0$$

F.d.T.
$$G(s) = \frac{s/C}{s^2 + s/(RC) + 1/(LC)}$$

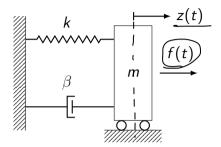
Rappresentazione interna (di stato)

$$x_1 = v$$
, $x_2 = i_L$, $u = u_i$, $y = x_1 = v$

$$F = \begin{bmatrix} -\frac{1}{RC} & -\frac{1}{C} \\ \frac{1}{L} & 0 \end{bmatrix}$$
, $G = \begin{bmatrix} \frac{1}{C} \\ 0 \end{bmatrix}$

$$H = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
, $J = 0$

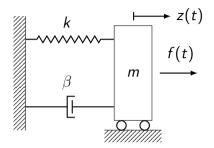
Massa-molla-smorzatore



$$f(t) = \text{input}, \ z(t) = \text{output}$$

Rappresentazione (esterna ed) interna?

Massa-molla-smorzatore



Rappresentazione esterna

$$m\ddot{z}+eta\dot{z}+kz-f=0$$
F.d.T. $G(s)=rac{1}{ms^2+eta s+k}$

$$f(t) = \text{input}, z(t) = \text{output}$$

Rappresentazione (esterna ed) interna?

Rappresentazione interna (di stato)

$$x_1 = z$$
, $x_2 = \dot{x}$, $u = f$, $y = x_1 = z$

$$F = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{\beta}{m} \end{bmatrix}, G = \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 0 \end{bmatrix}, J = 0$$

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019

In questa lezione

▶ Classificazione di sistemi

▶ Rappresentazione di sistemi

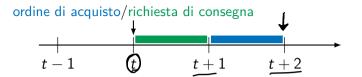
▶ Sistemi lineari in spazio di stato

eq. diff. \rightarrow modello di stato (extra

▶ Esempi di sistemi a tempo continuo

▷ Esempi di sistemi a tempo discreto

Magazzino merci



y(t)= quantità merce in magazzino al tempo t $u_1(t)=$ quantità merce <u>ordinat</u>a (in entrata) al tempo t $u_2(t)=$ quantità merce richiesta (in uscita) al tempo t $u_1(t),\ u_2(t)=$ input, y(t)= output

Magazzino merci

ordine di acquisto/richiesta di consegna

$$t-1$$
 t $t+1$ $t+2$

y(t) = quantità merce in magazzino al tempo t $u_1(t) = \text{quantità merce ordinata (in entrata) al tempo } t$ $u_2(t) = \text{quantità merce richiesta (in uscita) al tempo } t$

$$u_1(t)$$
, $u_2(t) = \text{input}$, $y(t) = \text{output}$

Rappresentazione esterna

$$y(t+1) - y(t) - u_1(t-1) + u_2(t) = 0$$

F.d.T.
$$G_1(z) = \frac{z^{-1}}{z-1}$$
, $G_2(z) = -\frac{1}{z-1}$

Rappresentazione interna (di stato)

$$x_1(t) = y(t), x_2(t) = u_1(t-1)$$

$$F = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
, $G = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

$$H = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
, $J = \begin{bmatrix} 0 & 0 \end{bmatrix}$

Estinzione debito

pagamento rata/aggiornamento debito

$$y(t)$$
 = debito al tempo t = output $u(t)$ = rata al tempo t = input l = tasso di interesse (decimale)

Estinzione debito

pagamento rata/aggiornamento debito

32 / 39

y(t) = debito al tempo t = output u(t) = rata al tempo t = inputl = tasso di interesse (decimale)

Rappresentazione esterna

$$y(t+1) - (1+I)y(t) + u(t+1) = 0$$

F.d.T.
$$G(z) = -\frac{z}{z - (1 + I)}$$

Rappresentazione interna (di stato)

$$x_1(t) = x(t) = y(t) + u(t)$$

$$F = 1 + I$$
, $G = -1 - I$
 $H = 1$, $J = -1$

Giacomo Baggio IMC-TdS-1920: Lez. 2 October 7, 2019

Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

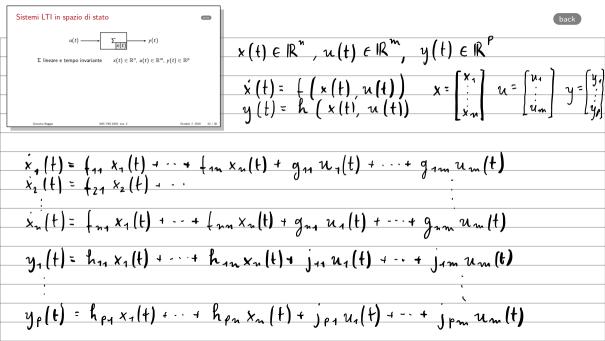
Lez. 2: Classificazione e Rappresentazione di Sistemi

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2019-2020

baggio@dei.unipd.it

* baggiogi.github.io



Circuito RLC

$$u(t) = v_1(t) = v_2(t) = v_3(t) = v_4(t) = v_4(t)$$

Rappresentatione interna?

 $\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{RC} & \frac{1}{C} \\ \frac{1}{C} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} \frac{1}{C} \\ 0 \end{bmatrix} u_i(t)$

Rappresentazione esterna:

Representazione esterna:

Newton:
$$m\ddot{z}(t) = f(t) - k\dot{z}(t) - \beta\dot{z}(t) \Rightarrow m\ddot{z}(t) + \beta\dot{z}(t) + k\dot{z}(t) - f(t) = 0$$

FaT:
$$m s^2 Z(s) + \beta s Z(s) + k Z$$

$$G_7(s) = \frac{Z(s)}{F(s)} = \frac{1}{m s^2 + \beta s + k}$$

Massa-molla-smorzatore

$$Z(s) + KZ$$

$$Z(s) + k Z(s) - F(s) = 0$$

Rappresentazione interna o di stato

$$x_1(t) = z(t)$$
 $x_2(t) = \dot{z}(t)$ $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

$$\dot{x}_1(t) = \dot{z}(t) = x_2(t)$$

$$\dot{x}_{2}(t) = \ddot{z}(t) = \frac{1}{m} f(t) - \frac{k}{m} z(t) - \frac{\beta}{m} \dot{z}(t) = \frac{1}{m} f(t) - \frac{k}{m} x_{1}(t) - \frac{\beta}{m} x_{2}(t)$$

 $y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \underbrace{0 \cdot f(t)}$

 $\begin{bmatrix} \dot{x}(t) = \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} \sigma & 1 \\ -\frac{K}{m} & -\frac{\beta}{n} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} \sigma \\ \frac{1}{n} \end{bmatrix} f(t)$

 $x_2(t) = \dot{y}(t)$

x3 (t) = 4 (t)

xn(t) = y (n-1)(t)

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1\dot{y} + a_0y = b_0u \quad (*)$$

$$x_1(t) = y(t) \qquad \qquad \dot{x}_1(t) = \dot{y}(t) = x_2(t)$$

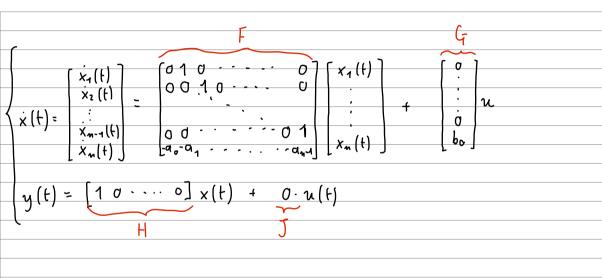
$$y(t) \longrightarrow \dot{x}_1(t) = \dot{y}(t) = x_2(t)$$

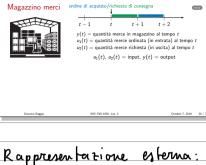
 $\rightarrow x_2(t) = y(t) = x_3(t)$

 $x_{m-1}(t) = x_m(t)$

$$(t) \longrightarrow \dot{x}_1(t) = \dot{y}(t) = x_2(t)$$

 $\Rightarrow |\dot{x}_{n}(t) = y^{(n)}(t) = -\alpha_{n-1} y^{(n-1)} - \cdots - \alpha_{1} \dot{y} - \alpha_{0} y + b_{0} u$ $= -\alpha_{n-1} \times_{n}(t) - \cdots - \alpha_{1} \times_{2}(t) - \alpha_{0} \times_{1}(t) + b_{0} u$





y(t) = quantità di merce al tempo t n₁(t) = quantità di merce ordinata al tempo t n₁(t) = quantità di merce in unità al tempo t

$$y(t+1) = y(t) + u_1(t-1) - u_2(t)$$

FAT:
$$z Y(z) = Y(z) + z^{-1} U_1(z) - U_2(z) \Rightarrow G_1(z) = \frac{Y(z)}{U_1(z)} = \frac{z^{-1}}{z-1}$$

$$G_2(z) = \frac{Y(z)}{U_2(z)} = \frac{Y(z)}{z-1}$$

Rappresentazione inherna o di stoto

$$x_1(t) = y(t)$$
 $x_2(t) = u_1(t-1)$ $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

$$x_1(t+1) = y(t+1) = y(t) + u_1(t-1) - u_2(t) = x_1(t) + x_2(t) - u_2(t)$$

$$\begin{cases} x(t+1) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \uparrow \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

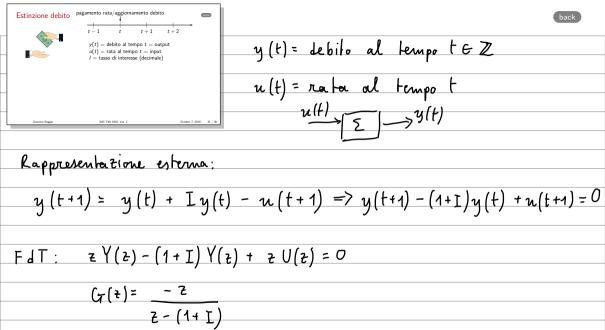
$$\frac{1}{2} \left[\frac{u_1(t)}{u_2(t)} \right]$$

$$x(t+1) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} f \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

$$x(t_0) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

$$\times (t_{\sigma}) \stackrel{?}{\sim} \left[y(t_{\sigma}) \right]$$

$$x_{2}(t+1) = u_{1}(t)$$



Rappresentatione interna o di storto:

$$x(t) = x_1(t) = y(t) + u(t) \implies y(t) = x(t) - u(t) (*)$$

$$x(t+1) = y(t+1) + u(t+1)$$

$$= (1+1)y(t) - u(t+1) + u(t+1)$$

$$= \frac{(1+1)y(t) - u(t+1) + u(t+1)}{(t) = (1+1)x(t) - (1+1)u(t)}$$

$$(*) = (1 + I) \times (t) - (1 + I) n(t)$$

$$\begin{cases} x(t+1) = (1+I)x(t) - (1+I)n(t) \\ y(t) = 1x(t) - 1n(t) \end{cases}$$