
Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 22: Esercizi di ricapitolazione su osservabilità, ricostruibilità, stimatori e regolatori

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2020-2021

In questa lezione

▶ Esercizio 1: osservabilità e ricostruibilità

▶ Esercizio 2: stimatori e regolatori

Esercizio 1

$$x(t+1) = Fx(t),$$
 $F = \begin{bmatrix} 1 & 1 & \alpha - \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 1 & \alpha \end{bmatrix},$ $\alpha \in \mathbb{R}$ $y(t) = Hx(t),$ $H = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$

1. Osservabilità, ricostruibilità e rivelabilità al variare di $\alpha \in \mathbb{R}$?

2. Spazi non osservabili $X_{NO}(t)$, $t \ge 1$, al variare di $\alpha \in \mathbb{R}$?

Esercizio 1: soluzione

- 1. Sistema osservabile per $\alpha \neq \frac{1}{2}$. Sistema ricostruibile per $\alpha \neq \frac{1}{2}$. Sistema rivelabile per ogni $\alpha \in \mathbb{R}$.
- 2. $X_{NO}(1) = \operatorname{span}\left\{\begin{bmatrix}0\\0\\1\end{bmatrix},\begin{bmatrix}1\\-1\\0\end{bmatrix}\right\}, \ X_{NO}(2) = \operatorname{span}\left\{\begin{bmatrix}\alpha-\frac{1}{2}\\\frac{1}{2}-\alpha\\1\end{bmatrix}\right\}, \ \alpha \in \mathbb{R},$ $X_{NO}(t) = egin{cases} \{0\}, & lpha
 eq rac{1}{2}, \ \mathrm{span} \left\{ egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}
 ight\}, & lpha = rac{1}{2}, \end{cases} & orall t \geq 3. \end{cases}$

G. Baggio

Lez. 22: Esercizi di ricapitolazione parte III(b)

12 Aprile 2021

Esercizio 2

$$x(t+1) = Fx(t) + Gu(t), \qquad F = egin{bmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ 1 & 0 & 0 \end{bmatrix}, \ G = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} \ y(t) = egin{bmatrix} y_1(t) \ y_2(t) \end{bmatrix} = Hx(t), \qquad H = egin{bmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \end{bmatrix}$$

- 1. Per quali uscite y_1 , y_2 esiste uno stimatore dead-beat?
- 2. Stimatore con errore di stima con modi solo convergenti o oscillatori usando y_2 ?
- 3. Regolatore dead-beat usando la sola uscita y_1 ?

Esercizio 2: soluzione

- 1. Esiste uno stimatore dead-beat solo per y_1 .
- 2. Lo stimatore richiesto non esiste.
- 3. Matrice di retroazione: $K = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$. Guadagno dello stimatore: $L = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$

G. Baggio

Lez. 22: Esercizi di ricapitolazione parte III(b)

12 Aprile 2021 7 / 7

