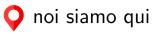
Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 15: Raggiungibilità e controllabilità a tempo discreto (parte 3)

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2021-2022





Nella scorsa lezione

- $u_t = R_{\perp}^T (R_t R_t^T)^{-1} x^*$ ▶ Controllo a minima energia a t.d.
- ▶ Sistemi non raggiungibili: forma di Kalman
- ▶ Test PBH di raggiungibilità

In questa lezione

▶ Controllabilità di sistemi lineari a t.d.

▶ Controllabilità e forma di Kalman

▶ Test PBH di controllabilità

Controllabilità di sistemi LTI a tempo discreto

$$x(t+1) = Fx(t) + Gu(t), x(0) = x_0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum x(t) \in \mathbb{R}^n$$

$$x^* = x(t) = F^t x_0 + \sum_{k=0}^{t-1} F^{t-k-1} Gu(k) = F^t x_0 + \mathcal{R}_t u_t$$

Controllabilità di sistemi LTI a tempo discreto

$$x(t+1) = Fx(t) + Gu(t), x(0) = x_0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum x(t) \in \mathbb{R}^n$$
 controllability a zero
$$0 = x(t) = F^t x_0 + \sum_{k=0}^{t-1} F^{t-k-1} Gu(k) = F^t x_0 + \mathcal{R}_t u_t$$
 $X_c(t)$ spario controllabile in t parii

Insieme di stati x_0 controllabili al tempo t (= in t passi) allo stato x(t) = 0?

Quando possiamo controllare a zero tutti i possibili stati $x_0 \in \mathbb{R}^n$?

$$X_c(t) = \mathbb{R}$$

Spazio controllabile

$$X_{C}(t) = \text{spazio controllabile in } t \text{ passi} = \{x \in \mathbb{R}^{n} : F^{t}x \in \text{im}(\mathcal{R}_{t})\}$$

$$X_{O} \in \mathbb{R}^{n} : \exists u_{t} \in \mathbb{R}^{mt} \text{ the soldisfa} \quad U = F^{t}x_{o} + R_{t}u_{t}$$

$$U = F^{t}x_{o} - R_{t}u_{t}$$

$$V_{O} \in \mathbb{R}^{n} : \exists u_{t} \in \mathbb{R}^{mt} \text{ the soldisfa}$$

$$V_{O} \in \mathbb{R}^{n} : \exists u_{t} \in \mathbb{R}^{mt} \text{ the soldisfa}$$

$$V_{O} \in \mathbb{R}^{n} : \exists u_{t} \in \mathbb{R}^{n} : F^{t}x_{o} + R_{t}u_{t}$$

$$V_{O} \in \mathbb{R}^{n} : \exists u_{t} \in \mathbb{R}^{n} : F^{t}x_{o} \in \mathbb{R}^{n} :$$

Spazio controllabile

$$X_C(t)=$$
 spazio controllabile in t passi $=\{x\in\mathbb{R}^n\ :\ F^tx\in \mathrm{im}(\mathcal{R}_t)\}$

Teorema: Gli spazi di controllabilità soddisfano:

$$X_C(1) \subseteq X_C(2) \subseteq X_C(3) \subseteq \cdots$$
of dim del nichemen

Inoltre, esiste un primo intero $i \leq n$ tale che

$$X_C(i) = X_C(j), \forall j \geq i.$$

i = indice di controllabilità

$$X_C \triangleq X_C(i) = \text{(massimo) spazio controllabile} = X_C(n)$$

Criterio di controllabilità

Definizione: Un sistema Σ a t.d. si dice (completamente) controllabile se $X_C = \mathbb{R}^n$. Un sistema Σ a t.d. si dice (completamente) controllabile in t passi se $X_C(t) = \mathbb{R}^n$, con t indice di controllabilità.

Criterio di controllabilità

Definizione: Un sistema Σ a t.d. si dice (completamente) controllabile se $X_C = \mathbb{R}^n$. Un sistema Σ a t.d. si dice (completamente) controllabile in t passi se $X_C(t) = \mathbb{R}^n$, con t indice di controllabilità.

$$\Sigma$$
 controllabile \iff im $(F^n) \subseteq$ im $(\mathcal{R}) = X_R$

Criterio di controllabilità

Definizione: Un sistema Σ a t.d. si dice (completamente) controllabile se $X_C = \mathbb{R}^n$. Un sistema Σ a t.d. si dice (completamente) controllabile in t passi se $X_C(t) = \mathbb{R}^n$, con t indice di controllabilità.

$$\Sigma$$
 controllabile \iff im $(F^n) \subseteq$ im $(\mathcal{R}) = X_R$

$$\Sigma$$
 raggiungibile $(X_R = \mathbb{R}^n) \Rightarrow \Sigma$ controllabile

 Σ controllabile $\not\Rightarrow \Sigma$ raggiungibile !!!

Esempi

1.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \ \alpha_1, \alpha_2 \in \mathbb{R}$$

2.
$$x(t+1) = \begin{vmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{vmatrix} x(t) + \begin{vmatrix} 1 \\ 0 \end{vmatrix} u(t), \ \alpha_1, \alpha_2 \in \mathbb{R}$$

3.
$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

Esempi

1.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \ \alpha_1, \alpha_2 \in \mathbb{R} \implies \text{non raggiungibile } \forall \alpha_1, \alpha_2 \in \mathbb{R}$$
 ma controllabile se $\alpha_1 = 0$

2.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t), \ \alpha_1, \alpha_2 \in \mathbb{R} \implies \begin{array}{l} \text{raggiungibile e quindi} \\ \text{controllabile} \end{array}$$

3.
$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$
 \implies non raggiungibile ma controllabile (in 2 passi)

In questa lezione

▶ Controllabilità di sistemi lineari a t.d.

▶ Controllabilità e forma di Kalman

▶ Test PBH di controllabilità

Controllabilità e forma canonica di Kalman

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_R(t+1) \\ x_{NR}(t+1) \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix} \begin{bmatrix} x_R(t) \\ x_{NR}(t) \end{bmatrix} + \begin{bmatrix} G_1 \\ 0 \end{bmatrix} u(t)$$

$$x_{NR}(t) = F_{22}^t x_{NR}(0)$$

Controllabilità e forma canonica di Kalman

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_R(t+1) \\ x_{NR}(t+1) \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix} \begin{bmatrix} x_R(t) \\ x_{NR}(t) \end{bmatrix} + \begin{bmatrix} G_1 \\ 0 \end{bmatrix} u(t)$$

$$x_{NR}(t) = F_{22}^t x_{NR}(0)$$

- 1. Σ controllabile $\iff \exists \, \overline{t} : F_{22}^t = 0, \ t \geq \overline{t} \Leftrightarrow F_{22}$ nilpotente (autovalori di $F_{22} = 0$)
- **2.** $X_R \subseteq X_C$ e $X_R = X_C$ se F_{22} invertibile
- **3.** Σ reversibile (= F invertibile) $\Longrightarrow F_{22}$ invertibile $\Longrightarrow X_R = X_C$

note

In questa lezione

▶ Controllabilità di sistemi lineari a t.d.

▶ Controllabilità e forma di Kalman

▶ Test PBH di controllabilità

Test PBH di controllabilità

$$\Sigma : x(t+1) = Fx(t) + Gu(t)$$

Teorema: Il sistema Σ è controllabile se e solo se la matrice PBH di raggiungibilità

$$PBH(z) = \begin{bmatrix} zI - F & G \end{bmatrix}$$

ha rango pieno (rank $[zI - F \ G] = n$) per ogni $z \in \mathbb{C}$ con $z \neq 0$.

Se reank (PBH(z)) < n solo per z=0
$$\Longrightarrow$$
 l'unico autovalore "non raggiungibile"
(= autovalore di F_{zz}) $\stackrel{.}{=}$ $\chi = 0$
 $\Longrightarrow \chi = 0$

Test PBH di controllabilità

$$\Sigma: x(t+1) = Fx(t) + Gu(t)$$

Teorema: Il sistema Σ è controllabile se e solo se la matrice PBH di raggiungibilità

$$\begin{bmatrix} zI - F & G \end{bmatrix}$$

ha rango pieno (rank $[zI - F \ G] = n$) per ogni $z \in \mathbb{C}$ con $z \neq 0$.

N.B. La matrice PBH può essere valutata solo per gli $z \neq 0$ che sono autovalori di F!

Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

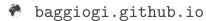
Docente: Giacomo Baggio

Lez. 15: Raggiungibilità e controllabilità a tempo discreto (parte 3)

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2021-2022

⊠ baggio@dei.unipd.it



$$X_c = X_c(n) = \left\{ x \in \mathbb{R}^n : F^n x \in \operatorname{Im} \mathbb{R}_n \right\}$$

 $im R_n = im R = X_R$

$$X_{c} = \mathbb{R}^{n} \iff X_{c}(n) = \mathbb{R}^{n} \iff \underline{\text{ogni}} \times \in \mathbb{R}^{n} \text{ soddisfa} \quad \overline{F}^{n} \times \in \text{im } \mathbb{R}$$

$$\iff \underline{\text{im } F^{n} \subseteq \text{im } \mathbb{R}^{n} \times \mathbb{R}^{n}}$$

 Σ raggiongibile $\Rightarrow X_R = \mathbb{R}^n \Rightarrow \text{im } F^n \subseteq X_R = \mathbb{R}^n \Rightarrow \Sigma$ controllabile

 Σ non raggiungibile ma $F=0 \Rightarrow \operatorname{im} F^n=\{\sigma\}\subseteq X_R \Rightarrow \Sigma$ controllabile

∑ controllabile ≠ ∑ reggivngibile

RAGGIUN GIBILITA CONTROLLABILITA

1)
$$F = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix}$$
 $\alpha_1, \alpha_2 \in \mathbb{R}$ $G = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Σ= (F,G) non regg. Yd, de R, E controllabile?

Dobbionne verificare se in F2 = im R = XR d1, d2 ER

$$X_R = \operatorname{im} R = \operatorname{im} \left[G + G \right] = \operatorname{im} \left[0 \quad 0 \right] = \operatorname{spon} \left[\left[0 \right] \right]$$

 $F^{2} = \begin{bmatrix} d_{1} & 0 \\ 1 & d_{2} \end{bmatrix} \begin{bmatrix} d_{1} & 0 \\ 1 & d_{2} \end{bmatrix} = \begin{bmatrix} d_{1} & 0 \\ d_{1} + d_{2} & d_{1}^{2} \end{bmatrix}$

$$| \{0\} | \qquad \qquad \alpha_1 = \alpha_2 = 0$$

$$| \text{im } F^2 = \{ \text{Spom} \{ [0] \} \} | \qquad \alpha_1 = 0, \alpha_2 \neq 0 \}$$

Span $\left\{ \begin{bmatrix} \alpha_1 \\ \alpha_1 \end{bmatrix} \right\}$ $\left\{ \begin{pmatrix} \alpha_1 \\ \alpha_1 \end{pmatrix} \right\}$ $\left\{ \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \right\}$

2)
$$F = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix}$$
 $G = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$R = [G FG] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \implies rank R = 2 \implies \sum ranggivngibile \forall d_1d_2$$

 \Rightarrow Σ controllabile \forall_{d_1,d_2}

im F2c Xp >> E controllabile

im F2 & XR => E non controllabile

$$X_{c}(1) = \left\{ x \in \mathbb{R}^{3} : F \times e \text{ im } \mathbb{R}_{1} \right\} = \left\{ x \in \mathbb{R}^{3} : F \times e \text{ im } \mathbb{C}_{7} \right\}$$

$$= \left\{ \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} : \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \in Spom \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} : \begin{bmatrix} x_{2} \\ 0 \\ x_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ x_{3} \end{bmatrix}, \quad A \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} 0 \\ 0 \\ x_{3} \end{bmatrix}, \quad A \in \mathbb{R} \right\}$$

$$= Spom \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad A \in \mathbb{R} \right\}$$

$$= Spom \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad A \in \mathbb{R} \right\}$$

$$X_{c}(2) = \{x \in \mathbb{R}^{3} : F^{2}x \in \text{im } \mathbb{R}_{2}\} = \{x \in \mathbb{R}^{3} : F^{2}x \in \text{im } [G FG]\}$$
 (*)

$$R_{i} = \begin{bmatrix} G & FG \end{bmatrix} = \begin{bmatrix} O & O \\ O & O \\ 1 & 1 \end{bmatrix}$$

=> E controllabile	in 2 passi	

١,

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \ F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \ G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_R(t+1) \\ x_{NR}(t+1) \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix} \begin{bmatrix} x_R(t) \\ x_{NR}(t) \end{bmatrix} + \begin{bmatrix} G_1 \\ 0 \end{bmatrix} u(t)$$

$$\begin{bmatrix} x_{NR}(t) = F_{22}^*x_{NR}(0) \end{bmatrix}$$

$$\exists T \longrightarrow \begin{cases} \times_{R}(t+1) = F_{11} \times_{R}(t) + F_{12} \times_{NR}(t) + G_{1} \times_{L}(t) \\ \times_{NR}(t+1) = F_{22} \times_{NR}(t) \end{cases}$$

1)
$$\Sigma_{R}$$
 raggivnegisile $\Longrightarrow \Sigma_{R}$ controllabile

$$\exists \bar{t}, u_{\bar{k}} \quad t.c. \quad \chi_{\ell}(\bar{t}) = 0 \quad \forall \chi_{\ell}(o) \in \mathbb{R}^{k}$$

Quanto
$$\exists \bar{t}$$
 t.c. $x_{NR}(\bar{t}) = F_{22} \times_{NR}(\bar{o}) = 0 \quad \forall x_{NR}(\bar{o}) \in \mathbb{R}^{n-k}$?

$$\exists \overline{t} \ t.c. \ F_{22}^{\overline{t}} \ V = 0 \quad \forall \ V \in \mathbb{R}^{n-k} \iff \exists \overline{t} \ t.c. \ F_{22}^{\overline{t}} = 0$$

A e nilpotente
$$A^{\overline{t}} = 0$$
.

$$AV = \lambda V \longrightarrow A^{\overline{t}} V = \lambda^{\overline{t}} V = 0$$

2)
$$\times_{R} = \left\{ \begin{bmatrix} x_{R} \end{bmatrix} \right\}_{n-k}^{K}, x_{R} \in \mathbb{R}^{k} \right\} \subseteq \times_{C}$$

