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Abstract— Understanding how the “degree” of non-normality
of a networked system is connected with the topological
structure of the underlying graph is of crucial importance
in many areas of the engineering and natural sciences, most
notably in the controllability analysis of large-scale networks.
This paper explores this relation in terms of the graph diam-
eter. More precisely, we derive diameter-dependent upper and
lower bounds on network non-normality. Further, we outline
a gradient-based optimization procedure to increase the non-
normality of a network.

Index Terms— Matrix non-normality, linear dynamical net-
works, transient amplification, graph diameter.

I. INTRODUCTION

A basic result of linear system theory states that spectrum
of the state matrix determines the asymptotic behavior of an
LTI system. On the other hand, the transient behavior of the
system depends on the “degree” of non-normality of the latter
matrix [1]. The departure from normality of a matrix A can
be measured in several different ways [1, Ch. 48], ranging
from the condition number of the eigenvector matrix of A to
the (Frobenius) norm of the difference AA>−A>A. In this
paper, we focus on two particular measures of non-normality
for linear dynamical systems that involve the energy of the
impulse response of the system. Our main objective is to
examine the relation between these non-normality measures
and the topological features of the underlying graph.

By means of analytical and numerical results, we show
that for positive systems a feature that seems intimately
connected with network non-normality is the diameter of
the underlying graph. In particular, we prove that a positive
network driven by a Metzler matrix cannot feature an high
degree of non-normality unless it has a large diameter.
Conversely, we show that, under certain conditions, a large
diameter automatically guarantees an high degree of non-
normality. Finally, we develop an algorithm for the maxi-
mization of the degree of non-normality of a given linear
dynamical network. This procedure leads to networks that
exhibit some preferred “anisotropic” directions which are, in
turn, connected with the graph diameter.

The main motivation behind the present work comes from
the fact that the analysis and classification of networks
featuring an high degree of non-normality, as well as the
synthesis of such networks via iterative and unsupervised
procedures, have witnessed an increase of interest in recent
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years. In fact, these topics have been investigated in a variety
of scientific contexts under different names, for instance:

• in neuroscience, non-normal networks arise in the study
of short-term memory capacity of linearized neuronal
networks [2]–[4], in the modelling of motor cortex
activity [5] and of spontaneously generated activity in
the visual cortex [6], [7]. In this context, non-normality
is commonly referred as patterned amplification and is
often measured in terms of length of the so-called feed-
forward chains of the network;

• in econometrics, non-normality is known as network
volatility [8], [9] and is tightly connected with issues
related to sensitivity and robustness of financial markets
[10];

• in control theory, and specifically in the controllability
analysis of large-scale networks, non-normal networks
have been labelled anisotropic networks in [11]. These
networks present favourable properties in terms of en-
ergy required to steer an initial state to a target one,
whereas networks that are close to be normal require a
large amount of energy to perform the same task [12]–
[15].

To the best of our knowledge, the only works that try
to connect a measure of non-normality with a topological
feature of the underlying graph are [15], [16], both in the
framework of network controllability. In the first paper a
relation between the worst-case control energy of positive
networks and some notions of network centrality is brought
to light. In the second paper, the authors investigate the
connection between the latter controllability metric and the
graph diameter for a particular class of networks. However,
the analysis there is quite restrictive in that the main result,
which is a diameter-dependent upper bound, apply to a very
special class of networks that essentially consists of acyclic
networks. Moreover, a diameter-dependent lower bound is
not discussed. Here instead we provide a more complete
picture, considering the whole class of positive networks and
deriving diameter-dependent upper and lower bounds.

Paper structure: The paper is organized as follows. Section
II introduces two measures of network non-normality that
will be analyzed in the rest of the paper. In Section III,
we derive upper and lower bounds on the first of the latter
measures in terms of the diameter of the underlying graph. In
Section IV, we outline a gradient-based numerical procedure
for maximizing the second non-normality measure. In the
same section we illustrate and discuss the numerical results
obtained by applying this procedure. Ultimately, in Section



V, we draw some concluding remarks and list a number of
open questions.

Notation and background results: In what follows, ā,
Re[a], and |a| denote the conjugate, real part, and modulus of
a complex number a ∈ C. A> and A∗ stand for the transpose
and conjugate transpose of A ∈ Cn×n, respectively. Further,
‖A‖2 := λmax(AA∗), ‖A‖2F := tr(AA∗), and |A|, denote
the operator norm, the Frobenius norm and the absolute
value matrix of A ∈ Cn×m. We define the spectral abscissa
of A ∈ Cn×n, α(A), as the maximum real part of the
eigenvalues of A, namely α(A) := max Re[λ(A)]. The
symbol diag(a1, an, . . . , an) stands for the diagonal matrix
with entries a1, a2, . . . , an on the diagonal. Finally, Aij
denotes the (i, j)-th entry of A, Ai: the i-th row of A, and
A:j the j-th column of A.

We denote by G = (V, E) the directed graph with vertex
(or node) set V = {1, 2, . . . , n}, edge set E ⊆ V × V . The
(weighted) adjacency matrix A ∈ Rn×n corresponding to the
graph G satisfies Aij > 0 iff (j, i) ∈ E . We denote by d(k, t)
the length of a shortest path from the node k to the node t.
We say that a path from k to t is minimal if its length is
equal to d(k, t). Given K, T ⊆ V , we denote by d(K, T ) the
maximum length of a shortest path from the nodes of K to
the nodes of T , namely

d(K, T ) := max { d(k, t) | k ∈ K, t ∈ T } .

Notice that, in case K ≡ T ≡ V , d(K, T ) coincides with
the diameter of the graph G. For this reason, d(K, T ) will
be termed relative diameter of the graph G.

A matrix A ∈ Rn×n is said to be positive (non-negative,
resp.) if all the entries of A are positive (non-negative). A
is said to be Metzler if all the off-diagonal entries of A
are non-negative. A is said to be (Hurwitz) stable if all the
eigenvalues of A have negative real part. From the Perron–
Frobenius theory, it follows that a Metzler matrix A has
always one real dominant eigenvalue and the right/left eigen-
vectors corresponding to this eigenvalue are non-negative
[17, Chap. 8]. We term the latter eigenvectors right/left
Perron vectors of A. A non-negative or Metzler A is said
to be irreducible if for every i, j there exists an integer
k > 0 s.t. [Ak]ij > 0 that is, if A represents the adjacency
matrix of a graph, there exists a path from node i to node
j. The right/left Perron vectors of a non-negative or Metzler
irreducible matrix are always strictly positive. Furthermore,
it can be shown that the diagonal entries of a stable Metzler
matrix are always negative [18, Chap. 6.4].

II. MEASURES OF NETWORK NON-NORMALITY

Consider a network driven by the continuous-time LTI
dynamics{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

t ≥ 0, x(0) =: x0 ∈ Rn, (1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, are the vector of
node states, control inputs, and outputs at time t, respectively.
A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rn×p are the adjacency
matrix of the network G = (V, E), the input matrix, and the

output matrix, respectively. Matrices B and C are used to
select a subset of input nodes K = {ki}mi=1 ⊆ V and a subset
of output nodes T = {ti}pi=1 ⊆ V , so that they are taken of
the form

B =
[
ek1 ek2 · · · ekm

]
, C =


e>t1
e>t2

...
e>tp

 ,
where {ek}nk=1 denote the canonical basis in Rn.

In this paper, we focus on the following two measures of
non-normality:

nn2(A,B,C) := sup
t≥0

∥∥CeAtB∥∥ , (2)

nnF(A,B,C) :=

∫ ∞
0

∥∥CeAtB∥∥2

F
dt. (3)

Notice that nn2(A,B,C) coincides with the worst-case 2-
norm of the impulse response of the LTI system (1), whereas
nnF(A,B,C) with the H2 norm of the system. The latter
norm measures the “energy” of the impulse response of the
system (1) [19, Ch. 4]. Note also that the above two measures
are well-defined only in case the system has a bounded
impulse response. In particular, this is always verified if A
is stable.

Remark 1: Notice that expression (2) can be thought of
as a measure of non-normality of a matrix A in case C =
B = I , namely

nn2(A, I, I) = sup
t≥0

∥∥eAt∥∥
This measure of non-normality has been analyzed in many
works, see e.g. [1, Chap. 15] wherein several bounds on this
index based on the notion of pseudospectrum of a matrix can
be found.

Remark 2: In case C = I , we have

nnF(A,B, I) =

∫ ∞
0

tr
(
eAtBB>eA

>t
)

dt = tr(Wc)

where Wc the controllability Gramian of the system, while,
if B = I ,

nnF(A, I, C) =

∫ ∞
0

tr
(
eA
>tC>CeAt

)
dt = tr(Wo).

whereWo the observability Gramian of the system. We point
out, in particular, that the controllability Gramian is related
to the amount of energy required to steer the zero state to
a target one. In this context, tr(Wc) has been analyzed as a
measure of network controllability in [20].

Remark 3: As briefly mentioned in the introduction, there
are many ways to quantify the non-normality of a matrix and,
therefore, the non-normality of a linear dynamical network.
Our main motivation behind the choice of the two measures
nn2(A,B,C) and nnF(A,B,C) hinges on the fact that for
the first measure it is possible to provide meaningful analyti-
cal bounds (Sec. III), while for the second measure a closed-
form expression of its gradient can be derived, rendering this
measure more suitable for optimization (Sec. IV). We stress



however that, although these two measures may look very
similar at a first sight, establishing a precise relation between
these two still represents a non-trivial open problem.

III. BOUNDS ON NETWORK NON-NORMALITY

In this section, we derive upper and lower bounds on
network non-normality for (irreducible) Metzler matrices.
We focus, in particular, on the stable case. The bounds relate
the non-normality measure nn2(A,B,C) to the relative
diameter d(K, T ) of the underlying graph.

A. Upper bounds

Theorem 1: Consider the linear system in (1) and let A ∈
Rn×n be a stable irreducible Metzler matrix. It holds

nn2(A,B,C) ≤
(

β

amin

)d(K,T )

, (4)

where amin is the smallest off-diagonal non-zero entry of A
and

β := α(A) + dmax

with dmax is the largest diagonal entry in modulus of A.
Proof: Firstly, we observe that, since A is irreducible,

the Perron vectors of A are strictly positive. Let w, v ∈ Rn
denote the strictly positive left, right (resp.) Perron vectors
of A and define

D := diag

[
v1

w1
,
v2

w2
, . . . ,

vn
wn

]
.

From sub-multiplicativity of matrix norm ‖·‖, it follows that,
for all t ≥ 0,∥∥CeAtB∥∥ =

∥∥∥CD1/2eD
−1/2AD1/2tD−1/2B

∥∥∥
≤ ‖CD1/2‖‖D−1/2B‖

∥∥∥eD−1/2AD1/2t
∥∥∥

≤ κ1/2
D

∥∥∥eD−1/2AD1/2t
∥∥∥ , (5)

where
κD :=

maxi∈T Dii

mini∈KDii
.

From the proof of [21, Theorem 18, point iii)], we have that1

DA+A>D − 2α(A)D ≤ 0,

or, equivalently,

D−1/2AD1/2 +D1/2A>D−1/2 − 2α(A)I ≤ 0,

Thus, from [22, Prop. 5.5.33], it holds∥∥∥eD−1/2AD1/2t
∥∥∥ ≤ eα(A)t.

In view of (5), this in turn implies

nn2(A) = sup
t≥0

∥∥CeAtB∥∥ ≤ κ1/2
D , (6)

since α(A) < 0 by assumption. Further, we notice that

κD ≤ κvκw,
1Here “≤” denotes the order relation between symmetric matrices, that

is A ≥ B if A−B is symmetric and positive semidefinite.

where

κv :=
maxi∈T vi
mini∈K vi

, κw :=
maxi∈K wi
mini∈T wi

.

Next, we derive an upper bound on κv . This bound is
inspired by a result of Ostrowski [23] (see also [24, Theorem
2.7]). Consider a path P = {p1, p2, . . . , pr} (pi 6= pi+1 for
i = 1, . . . , r − 1) connecting node p1 to node pr where
p1 = arg mini∈K vi and pr = arg maxi∈T vi, it holds

(α(A)−Apipi)vpi =
∑
j 6=pi

Apijvj ≥ aminvpi+1
> 0,

where amin denotes the smallest non-zero off-diagonal entry
of A. From the previous expression, it follows that

vpr
vp1

= κv ≤
r−1∏
i=1

α(A)−Apipi
amin

.

Since d(K, T ) ≥ r − 1, we have

κv ≤
(
α(A) + dmax

amin

)d(K,T )

. (7)

By applying the same argument to A>, we arrive at an
identical inequality for κw. Eventually, by plugging (7) into
(6), we obtain the desired upper bound.

The following corollary provides a more readable version
of the previous theorem.

Corollary 1: Consider the linear system in (1) and let A ∈
Rn×n be a stable irreducible Metzler matrix. It holds

nn2(A,B,C) ≤
(

β′

amin

)diam(G)

, (8)

where amin is smallest off-diagonal non-zero entry of A, and

β′ := min
{
dmax, dmax − dmin + max

i
Ri

}
,

with dmax, dmin are the largest, smallest diagonal entry in
modulus of A and Ri =

∑
j 6=iAij .

Proof: We have that
1) β = α(A) + dmax ≤ dmax,
2) α(A) ≤ −dmin + maxiRi by virtue of Gershgorin

circle theorem, so that β ≤ dmax − dmin + maxiRi.
A combination of the latter two bounds yields the desired
result.

For the case of networks described by complete graphs,
we have the following simpler result, which is not a direct
consequence of Theorem 1 and Corollary 1.

Proposition 1: Consider the linear system in (1) and let
A ∈ Rn×n be a stable irreducible Metzler matrix such that
Aij > 0 for all i 6= j. It holds

nn2(A,B,C) ≤ max {dmax − dmin + amin, amax}
amin

, (9)

where dmax, dmin denote the largest, smallest (resp.) diagonal
entry in modulus of A, and amax, amin the largest, smallest
(resp.) off-diagonal entry of A.

Proof: Let us define the (full) positive matrix

P := A+ (dmax + γ)I, γ > 0.



Let v be the right Perron vector of P . Since P is positive
the following result holds [23, Eq. (10)]

maxi vi
mini vi

≤ pmax

pmin
,

where pmax and pmin are the largest and smallest entry of
P , respectively. Further, it holds

pmax = max

{
max
i
Pii,max

i 6=j
Pij

}
= max

{
dmax + γ + max

i
Aii,max

i 6=j
Aij

}
= max {dmax + γ − dmin, amax} ,

and

pmin = min

{
min
i
Pii,min

i 6=j
Pij

}
= min

{
dmax + γ + min

i
Aii,min

i 6=j
Aij

}
= min {γ, amin} .

In view of the above expressions, we have

pmax

pmin
=

max {dmax + γ − dmin, amax}
min {γ, amin}

.

and the minimum is achieved for γ = amin. Finally, a
reasoning similar to that used in the proof of Theorem 1
completes the proof.

Remark 4: The results in Theorem 1, Corollary 1, Propo-
sition 1 assert that the relative diameter d(K, T ) plays a
crucial role in increasing the non-normality of a network
driven by a stable Metzler state matrix. More specifically, if
the network matrix A has bounded entries and the underlying
graph has bounded node degrees, then, by virtue of Corollary
1, as n tends to infinity the non-normality of the network can
increase only if d(K, T ) increases with n.

The bounds in Theorem 1 and Proposition 1 apply also to
systems described by general stable A’s (i.e., not necessarily
Metzler) as long as their Metzler part,

M(A) := diag(A) + |A− diag(A)|,

satisfies the assumptions used in these results. This fact is
an immediate consequence of the following result, which
follows from [24, Theorem 13 and Corollary 14].

Proposition 2: Let A ∈ Rn×n be a general matrix and let
M(A) denote its Metzler part. It holds∥∥CeAtB∥∥ ≤ ∥∥CeM(A)tB

∥∥, ∀t ≥ 0.

B. Lower bound

Given a path P connecting, we denote by amin(P) the
minimum entry of A along the path P . Denote by P(K, T )
the set of all minimal paths from K and ending in T whose
length is equal to d(K, T ) and define

amin(K, T ) := max
P∈P(K,T )

amin(P).

Theorem 2: Consider the linear system in (1) and let A ∈
Rn×n be a stable Metzler matrix. It holds

nn2(A,B,C) ≥ 1

e(d+ 1)

(
amin(K, T )

dmax

)d
, (10)

where dmax is the largest diagonal entry in modulus of A,
and d := d(K, T ).

Proof: From [25, Theorem 3.49] the following inequal-
ity holds

nn2(A,B,C) ≥ sup
s∈C : Re[s]>0

s
∥∥C(sI −A)−1B

∥∥ . (11)

Now pick any γ ≥ dmax > 0 so that Aγ := A + γI is
non-negative. Then

(sI −A)−1 = ((s+ γ)I −Aγ)
−1

=
∑
u≥0

Auγ
(s+ γ)u+1

,

Notice that this series converges for all s ∈ C such that
Re[s] > 0, since α(A) < 0. Then

∥∥C(sI −A)−1B
∥∥2

=

∥∥∥∥∥∥C
∑
u≥0

Auγ
(s+ γ)u+1

B

∥∥∥∥∥∥
2

= max
‖x‖=1

x>C
∑
u≥0

Akγ
(s+ γ)u+1

BB>
∑
w≥0

(A>γ )w

(s̄+ γ)w+1
C>x.

Notice that BB> =
∑
k∈K eke

>
k . Pick a path P ∈ P(K, T )

such that amin(P) = amin(K, T ) and let k̄ ∈ K be its starting
node and t̄ ∈ T its ending node. Moreover, let j be such that
e>j C = et̄. Then, choosing x = ej , we argue that∥∥C(sI −A)−1B

∥∥2 ≥

≥
∑
u,w≥0

∑
k∈K

e>j C
Auγ

(s+ γ)u+1
eke
>
k

(A>γ )w

(s̄+ γ)w+1
C>ej

=
∑
u,w≥0

∑
k∈K

et̄
Auγ

(s+ γ)u+1
eke
>
k

(A>γ )w

(s̄+ γ)w+1
et̄

Choosing u = d, w = d, and k = k̄, in view of the previous
relation and inequality (11), it follows that

∥∥C(sIn −A)−1B
∥∥2 ≥

(
[Adγ ]t̄k̄

|s+ γ|2(d+1)

)2

,

where [Adγ ]t̄k̄ is the entry of the matrix Adγ at position (t̄, k̄).
It is easy to see that this number is greater that or equal to
amin(K, T )d. Finally, taking γ = dmax and s = dmax/d we
obtain that

nn2(A,B,C) ≥ dd

(d+ 1)d+1

(
amin(K, T )

dmax

)d
.

Observe now that

dd

(d+ 1)d+1
≥ 1

e(d+ 1)
,

from which we obtain the thesis.
Remark 5: The consequence of the previous result is that,

if amin(K, T ) > dmax than the index nn2(A,B,C) explodes



exponentially fast in d(K, T ). This in turn implies that if a
network has a large diameter, then, for a particular choice
of weights, it is also possible to obtain an high degree of
non-normality.

C. A simple example

Consider the following n-dimensional Toeplitz line net-
work (n ≥ 2)

1 2 3 n

b
−a

c

. . .

described by the adjacency matrix

A =


−a c

b −a
. . .

. . . . . . c
b −a

 ∈ Rn×n, a, b, c > 0, (12)

with −a+ 2
√
bc < 0 (stability constraint). Moreover, we set

K = {1}, T = {n} and suppose, without loss of generality,
that b ≥ c. We recall that the eigenvalues of A have the form

λk(A) = −a+ 2
√
bc cos

(
kπ

n+ 1

)
, k = 1, 2, . . . , n.

In view of Theorem 1 and since α(A) ≤ −a + 2
√
bc, we

have

nn2(A,B,C) ≤ 2n
(
b

c

)n/2
=: nn2,

an the right-hand side is always exponentially increasing in
n. In view of Theorem 2, we have

nn2(A,B,C) ≥ 1

e(n+ 1)

(
b

a

)n
=: nn2.

Figure 1 shows the log-scale behavior of nn2, nn2, nn2 as
n varies, for a particular choice of the parameters a, b, c
that illustrates the effectiveness of the bounds.
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Fig. 1. Log-plot of nn2, nn2, and nn2 as functions of n, for the Toeplitz
line network in Eq. (12) with a = 1, b = 2, c = 0.1.

IV. SYNTHESIS OF NON-NORMAL NETWORKS

In this section, we outline an optimization procedure for
increasing the non-normality of a given linear networked
system as in (1). In contrast to what done in the previous sec-
tion, here we focus on the non-normality index nnF(A,B,C)
which is more amenable to optimization.

A. Problem formulation

We consider the LTI system in (1). The objective is to
maximize the non-normality index nnF(A,B,C) as defined
in (3) w.r.t. matrix A and subject to the following constraints

1) a certain stability margin on A,
2) sparsity constraint on A, depending on the topology

induced by G, and
3) upper and lower bounds on the off-diagonal entries of

A.
Henceforth, we let f(A) := nnF(A,B,C). The afore-

mentioned optimization problem can be formally stated as
follows

max
A∈Rn×n

f(A) (13)

s.t. α(A) < γ, (14)
Aij = 0, if (i, j) 6∈ E , (15)

A ≤ |Aij | ≤ A, if (i, j) ∈ E , i 6= j, (16)

where γ < 0 is a fixed stability margin and A, A > 0,
A ≤ A. Constraint (14) is the most difficult requirement to
take into account, since it depends in a nonlinear way on
A. To overcome this issue, we fix the spectrum of A, that is
we restrict the problem to the set of stable matrices of the
form T−1AT with T ∈ Rn×n nonsingular and A ∈ Rn×n
stable s.t. α(A) ≤ γ, describing the network G = (V, E).
In addition, due to the sparsity constraint (15), we further
restrict the attention to diagonal similarity transformations
D := diag(d1, d2, . . . , dn), di > 0, for which constraint
(15) is always met. Lastly, note that, up to a rescaling of
the elements of D, we may assume d1 = 1, without loss of
generality. Thus, defining A(D) := D−1AD, we arrive at
the following simplified problem

max
d2,...,dn>0

f (A(D)) (17)

s.t. 1/α ≤ di/dj ≤ α, if (i, j) ∈ E , (18)

where α := min(i,j)∈E,i6=j αij > 1 with αij :=
max

{
A/|Aij |, |Aij |/A

}
> 1. In order to turn constraint

(18) into a linear constraint we define δi := log di, so that
we have the equivalent problem

max
δ2,...,δn∈R

f(A(∆)) (19)

s.t. − β ≤ δi − δj ≤ β, if (i, j) ∈ E , (20)

where ∆ := ediag(δ1,...,δn) and β := logα. As a final remark,
by stacking the δi’s in a vector δ := [δ1, δ2, . . . , δn]>, we
notice that constraint (18) can be written as

S>δ ≤ β1N , (21)



where S ∈ Rn×N , N := |E|, coincides with the incidence
matrix of the graph G and 1N the all-one N -dimensional
vector.

B. The algorithm

The procedure we propose for the solution of the con-
strained maximization problem (19)-(20) is based on a Pro-
jected Gradient Ascent (PGA) algorithm, see e.g. [26, Sec.
22.3]. To this aim, we first derive an expression for the partial
derivative ∂f(A(∆))/∂δi.

Proposition 3: Consider an LTI system as in (1) described
by the triple (A(∆), B,C). For all i = 1, 2, . . . , n, it holds

∂f(A(∆))

∂δi
= 2 tr (Wc(∆)Wo(∆)Γi) , (22)

where Wo(∆) and Wc(∆) the are observability and control-
lability Gramians of the system (A(∆), B, C), respectively,
and

Γi := ∆−1(Aeie
>
i − eie

>
i A)∆. (23)

Proof: An application of the chain rule for the deriva-
tive of composition of functions [27, Ch. 2.8.1] yields

∂f(A(∆))

∂δi
= tr

[(
∂f(A(∆))

∂A(∆)

)>
∂A(∆)

∂δi

]
,

where [
∂f(A(∆))

∂A(∆)

]
ij

:=
∂f(A(∆))

∂A(∆)ij
.

It has been shown in [28, Lemma 3.1] that the latter quantity
is given by

∂f(A(∆))

∂A(∆)
= 2Wo(∆)Wc(∆).

So, it remains to show that

∂A(∆)

∂δi
= Γi, i = 2, . . . , n.

First, notice that the term δi appears in the i-th row and i-
th column of A(∆) only. So we will restrict the attention
to these rows and columns of A(∆). The i-th row and i-th
column of A(∆) have the form

A(∆)i: =
[
Ai1e

δ1−δi · · · Aii · · · Aineδn−δi
]
,

A(∆):i =
[
A1ie

δi−δ1 · · · Aii · · · Anieδi−δn
]>
,

respectively. In view of the latter equations, it holds

∂A(∆)i:
∂δi

=
[
−Ai1eδ1−δi · · · 0 · · · −Aineδn−δi

]
,

∂A(∆):i

∂δi
=
[
A1ie

δi−δ1 · · · 0 · · · Anieδi−δn
]>
.

It is now a matter of direct computation to conclude that
∂A(∆)/∂δi = Γi, as defined in (23), for all i.

Remark 6: It is worth remarking that the controllability
and observability Gramians which appear in the expression
of the derivatives (22) can be computed in an efficient and

robust way by solving two Lyapunov equations. Indeed, the
observability Gramian Wo(∆) is the unique solution of

A(∆)>Wo(∆) +Wo(∆)A(∆) = −C>C,

while the controllability Gramian Wc(∆) is the unique
solution of

A(∆)Wc(∆) +Wc(∆)A(∆)> = −BB>.

The latter two solutions always exist since A is stable.
The proposed procedure for the solution of problem (19)-

(18) is illustrated in Algorithm 1, where, for i = 1, 2, . . . , N ,
we denoted by

Πi(δ) := δ +
1

‖S:i‖2
(β − S>i: δ)S:i,

the Euclidean projections onto the feasible sets defined by
the constraint in (21).

Algorithm 1 Maximization of nnF via PGA
1: Pick A s.t. α(A) ≤ γ (initial adjacency matrix)
2: Set ε > 0 (stopping condition)
3: Set η > 0 (gradient ascent step-size)
4: Set δ ← δ0, δprev ← δ0,prev (initialization)
5: while ‖A(ediag(δ))−A(ediag(δprev))‖F > ε do
6: δprev ← δ

7: δi ← δi + η ∂f(A(ediag(δ)))
∂δi

, i = 2, . . . , n
8: for i = 1, 2, . . . , N do
9: if S>i: δ > β then

10: δ ← Πi(δ)
11: end if
12: end for
13: end while

C. Simulations

We tested Algorithm 1 in some different structured and
random scenarios. In Fig. 2 the outputs of the algorithm
for three structured networks, namely line, cycle, and grid
networks, are illustrated. Fig. 3 shows the results for two
random network topologies: The Barabási–Albert network
with attachment coefficient equal to one (left subplot) and
a fixed-degree distribution random network composed of
20% nodes with degree 3 and 80% nodes with degree 2
(right subplot).2 Observe, in particular, that the first choice
yields acyclic random graphs, while the second class of
random networks can possibly feature cycles. In all the
simulations we picked a non-negative almost symmetric
random initialization and we set K = {1} and T = V .

From the simulations, it can be noticed that the resulting
optimized networks exhibit some preferred “anisotropic”
directions of maximum length d(K, T ), both in the structured
and random case. The obtained numerical results seem
therefore in agreement with the analytical results derived in
Sec. III for the non-normality measure nn2(A,B,C).

2We refer to [29] for the precise definitions and the details on the
construction of these random networks.



(a) line network (n = 20)

(b) cycle network (n = 20) (c) grid network (n = 25)
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Fig. 2. Simulation results of Algorithm 1 for different structured network
topologies, namely line, cycle, and grid networks. Here the thickness of an
edge is proportional to the edge weight as indicated in the legend bar on
the left. The initialization of A is chosen to be stable, non-negative and
almost symmetric (namely, matrix with non-zero off-diagonal entries equal
to one plus i.i.d. uniformly distributed noise in [−0.1, 0.1]). We used the
following setup: β = 1, δ0 = 0, η = 0.2, ε = 10−6, K = {1} (bigger
red node in the figures), and T = V . Self-loops are omitted for clarity.

V. CONCLUDING REMARKS

In this paper, we analyzed the relation between network
non-normality and topological network structure. For the
case of positive systems, we showed that the network diam-
eter (or, more precisely, a generalization of the latter, called
relative diameter) is a topological feature that is strongly
connected with the non-normality degree of the dynamical
network. This follows both from the upper and lower bounds
derived in Sec. III for the measure nn2(A,B,C) and from
the numerical results illustrated in Sec. IV for the measure
nnF(A,B,C).

There are many open questions that need to be ad-
dressed. An immediate one concerns the derivation of ana-
lytical bounds similar to those of Sec. III for the measure
nnF(A,B,C), whereas a more challenging one concerns
the extension of the ideas in this paper to general networks
featuring both positive and negative weights.
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