Stima \& Filtraggio: Lab 4

Giacomo Baggio

Dipartimento di Ingegneria dell'Informazione
Università degli Studi di Padova

```
        \| ~ b a g g i o @ d e i . u n i p d . i t ~
* baggio.dei.unipd.it/~
```

June 7, 2017

Today's Lab

Wiener Filtering \& Applications II

(Some other) MATLAB ${ }^{\oplus}$ tools for Wiener filtering

Today's Lab

Wiener Filtering \& Applications II

(Some other) MATLAB ${ }^{\circledR}$ tools for Wiener filtering

- Scalar rational spectral factorization
- Wiener prediction

Wiener filtering

Setup

$\{x(t)\}_{t \in \mathbb{Z}}$: stationary input process

$\{n(t)\}_{t \in \mathbb{Z}}$: stationary external noise $\left[\begin{array}{cc}\Phi_{x} & \Phi_{x y} \\ \Phi_{x y}^{*} & \Phi_{y}\end{array}\right]$
$\{y(t)\}_{t \in \mathbb{Z}}$: stationary output process $\quad \uparrow$
Joint spectrum

Wiener filtering

Wiener estimate

$$
\begin{aligned}
& H(z):=\left[\frac{\Phi_{x y}(z)}{W_{y}\left(z^{-1}\right)}\right]_{+} \frac{1}{W_{y}(z)} \\
& \Phi_{y}\left(e^{j \theta}\right)=W_{y}\left(e^{j \theta}\right) W_{y}\left(e^{-j \theta}\right)
\end{aligned}
$$

Wiener filtering

Wiener estimate

$$
\begin{aligned}
& H(z):=\left[\frac{\Phi_{x y}(z)}{W_{y}\left(z^{-1}\right)}\right]_{+} \frac{1}{W_{y}(z)} \\
& \Phi_{y}\left(e^{j \theta}\right)=W_{y}\left(e^{j \theta}\right) W_{y}\left(e^{-j \theta}\right)
\end{aligned}
$$

Wiener filtering

Wiener estimate

$$
\begin{aligned}
& H(z):=\left[\frac{\Phi_{x y}(z)}{W_{y}\left(z^{-1}\right)}\right]_{+} \frac{1}{W_{y}(z)} \\
& \Phi_{y}\left(e^{j \theta}\right)=W_{y}\left(e^{j \theta}\right) W_{y}\left(e^{-j \theta}\right)
\end{aligned}
$$

$$
\operatorname{Var} \tilde{x}(t \mid t)=\int_{-\pi}^{\pi}\left(\Phi_{x}\left(e^{j \theta}\right)-H^{\varepsilon}\left(e^{j \theta}\right) H^{\varepsilon}\left(e^{-j \theta}\right)\right) \frac{d \theta}{2 \pi}
$$

estimation error variance

Wiener filtering in practice

How to perform spectral factorization?

How to compute the causal and (strictly) anticausal part of a rational function?

How to compute the integral of a rational function upon the unit circle?

Wiener filtering in practice

How to perform spectral factorization?

Scalar rational spectral factorization

$\Phi\left(e^{j \theta}\right)$ spectral density of a scalar second-order stationary process $\{y(t)\}_{t \in \mathbb{Z}}$:

1. $\Phi\left(e^{j \theta}\right)=\Phi\left(e^{-j \theta}\right)$
2. $\Phi\left(e^{j \theta}\right) \geq 0, \quad \forall \theta \in[-\pi, \pi]$
3. $\int_{-\pi}^{\pi} \Phi\left(e^{j \theta}\right) \frac{\mathrm{d} \theta}{2 \pi}=\mathbb{E}\left[y(t)^{2}\right]<\infty$

Scalar rational spectral factorization

$\Phi\left(e^{j \theta}\right)$ spectral density of a scalar second-order stationary process $\{y(t)\}_{t \in \mathbb{Z}}$. Suppose that $\Phi(z)$ is a rational function of $z \in \mathbb{C}$:

1. $\Phi(z)=\Phi\left(z^{-1}\right)$

2. $\Phi\left(e^{j \theta}\right) \geq 0, \quad \forall \theta \in[-\pi, \pi]$
3. $\int_{-\pi}^{\pi} \Phi\left(e^{j \theta}\right) \frac{\mathrm{d} \theta}{2 \pi}=\mathbb{E}\left[y(t)^{2}\right]<\infty$

$\Phi(z)$ has no poles
on the unit circle
The zeros on the unit circle of $\Phi(z)$ have even multiplicites

Scalar rational spectral factorization

Task. Compute a factorization of $\Phi(z)$ of the form

$$
\Phi(z)=W(z) W\left(z^{-1}\right)
$$

where $W(z)$ is a scalar rational function such that it is strictly stable and with marginally stable inverse. $W(z)$ is called the minimum-phase spectral factor of $\Phi(z)$.

Scalar rational spectral factorization the procedure

Let $\left\{p_{i}\right\}_{i=1}^{n}$ be the strictly stable (finite) poles of $\Phi(z)$ different from zero, counted with multiplicity. Let $\left\{z_{i}\right\}_{i=1}^{m}$ be the marginally stable (finite) zeros of $\Phi(z)$ different from zero, counted with multiplicity for the strictly stable zeros and with half-multiplicity for the marginally stable zeros.

Scalar rational spectral factorization the procedure

Let $\left\{p_{i}\right\}_{i=1}^{n}$ be the strictly stable (finite) poles of $\Phi(z)$ different from zero, counted with multiplicity. Let $\left\{z_{i}\right\}_{i=1}^{m}$ be the marginally stable (finite) zeros of $\Phi(z)$ different from zero, counted with multiplicity for the strictly stable zeros and with half-multiplicity for the marginally stable zeros.

1. $\Phi(z)=c z^{r} \frac{\prod_{i=1}^{m}\left(z-z_{i}\right)\left(z-1 / z_{i}\right)}{\prod_{i=1}^{n}\left(z-p_{i}\right)\left(z-1 / p_{i}\right)}, c>0, r \in \mathbb{Z}$ (zero-pole-gain decomposition)

Scalar rational spectral factorization

 the procedureLet $\left\{p_{i}\right\}_{i=1}^{n}$ be the strictly stable (finite) poles of $\Phi(z)$ different from zero, counted with multiplicity. Let $\left\{z_{i}\right\}_{i=1}^{m}$ be the marginally stable (finite) zeros of $\Phi(z)$ different from zero, counted with multiplicity for the strictly stable zeros and with half-multiplicity for the marginally stable zeros.

1. $\Phi(z)=c z^{r} \frac{\prod_{i=1}^{m}\left(z-z_{i}\right)\left(z-1 / z_{i}\right)}{\prod_{i=1}^{n}\left(z-p_{i}\right)\left(z-1 / p_{i}\right)}, c>0, r \in \mathbb{Z}$
2. $\Phi(z)=\lambda^{2} \frac{\prod_{i=1}^{m}\left(z-z_{i}\right)\left(z^{-1}-z_{i}\right)}{\prod_{i=1}^{n}\left(z-p_{i}\right)\left(z^{-1}-p_{i}\right)}, \lambda^{2}:=c \frac{\prod_{i=1}^{m}-\frac{1}{z_{i}}}{\prod_{i=1}^{n}-\frac{1}{p_{i}}}>0$
("symmetrizing" the equation)

Scalar rational spectral factorization

 the procedureLet $\left\{p_{i}\right\}_{i=1}^{n}$ be the strictly stable (finite) poles of $\Phi(z)$ different from zero, counted with multiplicity. Let $\left\{z_{i}\right\}_{i=1}^{m}$ be the marginally stable (finite) zeros of $\Phi(z)$ different from zero, counted with multiplicity for the strictly stable zeros and with half-multiplicity for the marginally stable zeros.

1. $\Phi(z)=c z^{r} \frac{\prod_{i=1}^{m}\left(z-z_{i}\right)\left(z-1 / z_{i}\right)}{\prod_{i=1}^{n}\left(z-p_{i}\right)\left(z-1 / p_{i}\right)}, c>0, r \in \mathbb{Z}$
2. $\Phi(z)=\lambda^{2} \frac{\prod_{i=1}^{m}\left(z-z_{i}\right)\left(z^{-1}-z_{i}\right)}{\prod_{i=1}^{n}\left(z-p_{i}\right)\left(z^{-1}-p_{i}\right)}, \lambda^{2}:=c \frac{\prod_{i=1}^{m}-\frac{1}{z_{i}}}{\prod_{i=1}^{n}-\frac{1}{p_{i}}}>0$
3. $W(z)=z^{n-m} \lambda \frac{\prod_{i=1}^{m}\left(z-z_{i}\right)}{\prod_{i=1}^{n}\left(z-p_{i}\right)} \quad$ ("balancing" relative degree)

Scalar rational spectral factorization ...in MATLAB ${ }^{\oplus}$

$$
\gg[c v Z, c v P, d K]=z p k(t f P h i, ' v ')
$$

$\mathrm{cvZ}=\left[\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{2 m}\end{array}\right]^{\top} \quad$ (column vector containing the zeros of $\Phi(z)$, counted with multiplicity) $\mathrm{cvP}=\left[\begin{array}{llll}p_{1} & p_{2} & \ldots & p_{2 n}\end{array}\right]^{\top} \quad$ (column containing the poles of $\Phi(z)$, counted with multiplicity)

- $\quad d K=c \quad$ (gain of $\Phi(z))$

Wiener prediction

k-step ahead Wiener predictor

$$
H(z):=\left[z^{k} \frac{\Phi_{x y}(z)}{W_{y}\left(z^{-1}\right)}\right]_{+} \frac{1}{W_{y}(z)}
$$

$$
\Phi_{y}\left(e^{j \theta}\right)=W_{y}\left(e^{j \theta}\right) W_{y}\left(e^{-j \theta}\right)
$$

Wiener prediction

k-step ahead Wiener predictor

$$
\text { Case }\{x(t)\}_{t \in \mathbb{Z}}=\{y(t)\}_{t \in \mathbb{Z}}
$$

$$
H(z):=\left[z^{k} W_{y}(z)\right]_{+} \frac{1}{W_{y}(z)}
$$

$$
\Phi_{y}\left(e^{j \theta}\right)=W_{y}\left(e^{j \theta}\right) W_{y}\left(e^{-j \theta}\right)
$$

Wiener prediction

k-step ahead Wiener predictor

$$
\text { Case }\{x(t)\}_{t \in \mathbb{Z}}=\{y(t)\}_{t \in \mathbb{Z}}
$$

$$
H(z):=\left[z^{k} W_{y}(z)\right]_{+} \frac{1}{W_{y}(z)}
$$

$$
\Phi_{y}\left(e^{j \theta}\right)=W_{y}\left(e^{j \theta}\right) W_{y}\left(e^{-j \theta}\right)
$$

process

How to compute $\left[z^{k} W_{y}(z)\right]_{+}$?
Suppose $\Phi_{y}(z)$ rational:

$$
\begin{aligned}
& W_{y}(z)=\frac{C(z)}{A(z)}=\ell_{0}+\ell_{1} z^{-1}+\ell_{2} z^{-2}+\ldots \\
& z^{k} W_{y}(z)=\left[z^{k} W_{y}(z)\right]_{+}+\left[\left[z^{k} W_{y}(z)\right]\right]_{-}
\end{aligned}
$$

How to compute $\left[z^{k} W_{y}(z)\right]_{+}$?
Suppose $\Phi_{y}(z)$ rational:

$$
\begin{aligned}
& W_{y}(z)=\frac{C(z)}{A(z)}=\ell_{0}+\ell_{1} z^{-1}+\ell_{2} z^{-2}+\ldots \\
& z^{k} W_{y}(z)=\left[z^{k} W_{y}(z)\right]_{+}+\left[\left[z^{k} W_{y}(z)\right]\right]_{-} \\
& \frac{C_{k}(z)}{A(z)} \quad \ell_{0} z^{k}+\ell_{1} z^{k-1}+\cdots+\ell_{k-1} z
\end{aligned}
$$

$\stackrel{\ominus}{\risingdotseq}$

How to compute $\left[z^{k} W_{y}(z)\right]_{+}$?
Suppose $\Phi_{y}(z)$ rational:

$$
\begin{gathered}
W_{y}(z)=\frac{C(z)}{A(z)}=\ell_{0}+\ell_{1} z^{-1}+\ell_{2} z^{-2}+\ldots \\
z^{k} \frac{C(z)}{A(z)}=\frac{C_{k}(z)}{A(z)}+\sum_{i=0}^{k-1} \ell_{i} z^{k-i}
\end{gathered}
$$

How to compute $\left[z^{k} W_{y}(z)\right]_{+}$?
Suppose $\Phi_{y}(z)$ rational:

$$
\begin{gathered}
W_{y}(z)=\frac{C(z)}{A(z)}=\ell_{0}+\ell_{1} z^{-1}+\ell_{2} z^{-2}+\ldots \\
z^{k} C(z)=A(z) \sum_{i=0}^{k-1} \ell_{i} z^{k-i}+C_{k}(z) \\
z^{k} C(z) / z A(z) \rightarrow \text { polynomial division } \\
Q(z):=\sum_{i=0}^{k-1} \ell_{i} z^{k-1-i} \rightarrow \text { quotient } \\
R(z):=C_{k}(z) \rightarrow \text { remainder }
\end{gathered}
$$

How to compute $\left[z^{k} W_{y}(z)\right]_{+}$?
Suppose $\Phi_{y}(z)$ rational:

$$
\begin{gathered}
W_{y}(z)=\frac{C(z)}{A(z)}=\ell_{0}+\ell_{1} z^{-1}+\ell_{2} z^{-2}+\ldots \\
z^{k} C(z)=z A(z) Q(z)+R(z)
\end{gathered}
$$

...in MATLAB ${ }^{\circledR}$
$\gg[r v Q, r v R]=\operatorname{deconv}([r v C \underset{k \text { zeros }}{0 \ldots 0}], \quad[r v A 0])$

Wiener prediction: rational case

$$
H(z):=\left[z^{k} W_{y}(z)\right]_{+} \frac{1}{W_{y}(z)}=\frac{C_{k}(z)}{C(z)}
$$

$$
\operatorname{Var} \tilde{y}(t+k \mid t)=\sum_{i=0}^{k-1} \ell_{i}^{2}
$$

prediction error variance

Q Practice time!

Ex 1. Create a function
tfW = spectralFactor(tfPhi)
that has as input a transfer function object tfPhi corresponding to a rational scalar discrete-time spectral density. The function returns the minimum-phase spectral factor of tfPhi .

Ex 2. Create a function
[cvYhat,dVar] = WienerPredictor(tfPhi,cvY,iK)
that has as input a rational scalar spectral density tfPhi of the process $\{y(t)\}_{t \in \mathbb{Z}}$, a trajectory cvY of the latter process, and a positive integer $i K=k$. The function returns the Wiener predictions $\hat{y}(t+k \mid t)$ in the vector cvYhat and the prediction error variance $\operatorname{Var} \tilde{y}(t+k \mid t)$ in the variable dVar.

