Stima \& Filtraggio: Lab 3

Giacomo Baggio

Dipartimento di Ingegneria dell'Informazione
Università degli Studi di Padova

\boxtimes baggio@dei.unipd.it

* baggio.dei.unipd.it/~teaching

May 24, 2017

Today's Lab

Wiener Filtering \& Applications

(1) Stochastic processes in MATLAB ${ }^{\oplus}$
(2) MATLAB ${ }^{\oplus}$ tools for Wiener filtering

Today's Lab

Wiener Filtering \& Applications

$(\Theta 30 \mathrm{~min})$
 (1) Stochastic processes in MATLAB ${ }^{\oplus}$

(2) MATLAB ${ }^{\oplus}$ tools for Wiener filtering

Today's Lab

Wiener Filtering \& Applications

(1) Stochastic processes in MATLAB ${ }^{\oplus}$

- Generating white noise
- Generating filtered noise
- Useful MATLAB ${ }^{\circledR}$ commands

(weakly stationary) white noise processes

$\{e(t)\}_{t \in \mathbb{Z}}$ s.t. $\mathbb{E}[e(t)]=\mu, \mathbb{E}[e(t) e(s)]=\sigma^{2} \delta(t-s)+\mu^{2}$

(weakly stationary)
 white noise processes

$$
\begin{array}{r}
\{e(t)\}_{t \in \mathbb{Z}} \text { s.t. } \mathbb{E}[e(t)]=\mu, \mathbb{E}[e(t) e(s)]=\sigma^{2} \delta(t-s)+\mu^{2} \\
\bar{e}(t):=e(t)-\mu, \bar{e}(t) \perp \bar{e}(s), s \neq t
\end{array}
$$

(weakly stationary) white noise processes

$\{e(t)\}_{t \in \mathbb{Z}}$ s.t. $\mathbb{E}[e(t)]=\mu, \mathbb{E}[e(t) e(s)]=\sigma^{2} \delta(t-s)+\mu^{2}$

100 samples of Gaussian WN with mean μ and var. σ^{2} :

$$
\gg \operatorname{rvE}=d M u+d S i g m a * r a n d n(1,100)
$$

$\mu \quad \sigma$

(weakly stationary) white noise processes

$$
\{e(t)\}_{t \in \mathbb{Z}} \text { s.t. } \mathbb{E}[e(t)]=\mu, \mathbb{E}[e(t) e(s)]=\sigma^{2} \delta(t-s)+\mu^{2}
$$

100 samples of Gaussian white noise with mean μ and var. σ^{2} :

$$
\begin{gathered}
\gg \operatorname{rvE}=\mathrm{dMu}+\mathrm{dSigma} * \text { randn }(1,100) \\
\mu=1 \quad \sigma=1
\end{gathered}
$$

(weakly stationary) white noise processes

$\{e(t)\}_{t \in \mathbb{Z}}$ s.t. $\mathbb{E}[e(t)]=\mu, \mathbb{E}[e(t) e(s)]=\sigma^{2} \delta(t-s)+\mu^{2}$
Spectral density: $\Phi_{e}\left(e^{j \theta}\right)=2 \pi \mu^{2} \delta(\theta)+\sigma^{2}, \theta \in[-\pi, \pi]$

(weakly stationary) white noise processes

- multivariate case -

$\{\boldsymbol{e}(t)\}_{t \in \mathbb{Z}}$ s.t. $\mathbb{E}[\boldsymbol{e}(t)]=\boldsymbol{\mu}, \mathbb{E}\left[\boldsymbol{e}(t) \boldsymbol{e}^{\top}(s)\right]=\Sigma \delta(t-s)+\boldsymbol{\mu} \boldsymbol{\mu}^{\top}$

$$
\Sigma=\Sigma^{\top} \geq 0
$$

(weakly stationary) white noise processes

- multivariate case -
$\{\boldsymbol{e}(t)\}_{t \in \mathbb{Z}}$ s.t. $\mathbb{E}[\boldsymbol{e}(t)]=\boldsymbol{\mu}, \mathbb{E}\left[\boldsymbol{e}(t) \boldsymbol{e}^{\top}(s)\right]=\Sigma \delta(t-s)+\boldsymbol{\mu} \boldsymbol{\mu}^{\top}$
1 sample of 2-dim. Gaussian white noise with mean $\boldsymbol{\mu} \in \mathbb{R}^{2}$ and cov. $\Sigma=\Sigma^{\top} \in \mathbb{R}^{2 \times 2}, \Sigma \geq 0$:
>> $\mathrm{mE}=\mathrm{rvMu}+\operatorname{sqrtm}(\mathrm{dSigma}) * r a n d n(2,100)$
μ

$$
\Sigma^{\frac{1}{2}}
$$

symmetric matrix
square root

(weakly stationary) white noise processes

- multivariate case -

$$
\{\boldsymbol{e}(t)\}_{t \in \mathbb{Z}} \text { s.t. } \mathbb{E}[\boldsymbol{e}(t)]=\boldsymbol{\mu}, \mathbb{E}\left[\boldsymbol{e}(t) \boldsymbol{e}^{\top}(s)\right]=\Sigma \delta(t-s)+\boldsymbol{\mu} \boldsymbol{\mu}^{\top}
$$

1 sample of 2-dim. Gaussian white noise with mean $\boldsymbol{\mu} \in \mathbb{R}^{2}$ and cov. $\Sigma=\Sigma^{\top} \in \mathbb{R}^{2 \times 2}, \Sigma \geq 0$:
>> mE = rvMu + chol(dSigma,'lower')*randn (2,100)

$$
\boldsymbol{\mu} \quad L: \Sigma=L L^{\top}
$$

Cholesky factor

Filtered noise processes

Filtered noise processes

Filtered noise processes

$$
G(z)=\frac{N(z)}{D(z)}, \quad N(z), D(z) \text { polynomials }
$$

$$
\downarrow
$$

$$
D\left(z^{-1}\right) y(t)=N\left(z^{-1}\right) e(t) \quad \text { (ARMA representation) }
$$

$$
z^{-1}=\text { delay operator }
$$

Filtered noise processes

Task. Generate 100 samples of the process

$$
y(t)=0.1 y(t-1)+e(t)-0.2 e(t-2)
$$

where $\{e(t)\}_{t \in \mathbb{Z}}$ is a Gaussian WN process $(\mu=0, \sigma=1)$

Filtered noise processes

Task. Generate 100 samples of the process

$$
y(t)=0.1 y(t-1)+e(t)-0.2 e(t-2)
$$

where $\{e(t)\}_{t \in \mathbb{Z}}$ is a Gaussian WN process $(\mu=0, \sigma=1)$
Note that $N\left(z^{-1}\right)=1-0.2 z^{-2}, D\left(z^{-1}\right)=1-0.1 z^{-1}$

$$
\left.\Longrightarrow G(z)=\frac{z^{2}-0.2}{z^{2}-0.1 z} \quad \text { (stable! }\right)
$$

Filtered noise processes

Task. Generate 100 samples of the process

$$
y(t)=0.1 y(t-1)+e(t)-0.2 e(t-2)
$$

where $\{e(t)\}_{t \in \mathbb{Z}}$ is a Gaussian WN process $(\mu=0, \sigma=1)$
>> $r v N=\left[\begin{array}{lll}1 & 0 & -0.2\end{array}\right]$ define the numerator and
>> rvD = [1 -0.1] denominator polynomials in z^{-1}

Filtered noise processes

Task. Generate 100 samples of the process

$$
y(t)=0.1 y(t-1)+e(t)-0.2 e(t-2)
$$

where $\{e(t)\}_{t \in \mathbb{Z}}$ is a Gaussian WN process $(\mu=0, \sigma=1)$
>> $\operatorname{rvE}=\operatorname{randn}(1,100) \quad$ create white noise sequence

Filtered noise processes

Task. Generate 100 samples of the process

$$
y(t)=0.1 y(t-1)+e(t)-0.2 e(t-2)
$$

where $\{e(t)\}_{t \in \mathbb{Z}}$ is a Gaussian WN process $(\mu=0, \sigma=1)$
>> rvY = filter(rvN,rvD,rvE) generate the process!
N.B. Initial conditions set to 0 三

Filtered noise processes

Task. Generate 100 samples of the process

$$
y(t)=0.1 y(t-1)+e(t)-0.2 e(t-2)
$$

where $\{e(t)\}_{t \in \mathbb{Z}}$ is a Gaussian WN process $(\mu=0, \sigma=1)$
an alternative procedure...

Filtered noise processes

Task. Generate 100 samples of the process

$$
y(t)=0.1 y(t-1)+e(t)-0.2 e(t-2)
$$

where $\{e(t)\}_{t \in \mathbb{Z}}$ is a Gaussian WN process $(\mu=0, \sigma=1)$
$\gg z=t f(' z ') \quad$ define the transfer function
$\gg t f G=\left(z^{\wedge} 2-0.2\right) /\left(z^{\wedge} 2-0.1 * z\right)$

Filtered noise processes

Task. Generate 100 samples of the process

$$
y(t)=0.1 y(t-1)+e(t)-0.2 e(t-2)
$$

where $\{e(t)\}_{t \in \mathbb{Z}}$ is a Gaussian WN process $(\mu=0, \sigma=1)$
>> cvY = lsim(tfG,rvE) generate the process!
N.B. Initial conditions set to 0

Filtered noise processes

- an important remark -

$$
\begin{aligned}
& \begin{cases}\left\{e_{1}\right\},\left\{e_{2}\right\} & e_{1}(t) \longrightarrow G_{1}(z)\end{cases} \longrightarrow y_{1}(t) \\
& \text { WNs, } \\
&\left\{e_{1}\right\} \perp\left\{e_{2}\right\} e_{2}(t) \longrightarrow y_{2}(t)
\end{aligned}
$$

$\left\{e_{1}\right\},\left\{e_{2}\right\},\{e\}$ same mean and variance

Filtered noise processes

- an important remark -

Question: Do \boldsymbol{y} and $\tilde{\boldsymbol{y}}$ define the same process?

Filtered noise processes

- an important remark -

Answer: No, since $\left\{e_{1}\right\} \perp\left\{e_{2}\right\}$!

Useful MATLAB ${ }^{\circledR}$ commands

Create TF $\frac{N(z)}{D(z)}$

$$
\gg t f G=t f(r v N, r v D,-1)
$$

Filter $\{e(t)\}_{t=t_{1}}^{t_{2}}$ by $\frac{N(z)}{D(z)} \quad \gg r v Y=$ filter (rvN,rvD,rvE)
Filter $\{e(t)\}_{t=t_{1}}^{t_{2}}$ by $G(z) \quad \gg \operatorname{cvY}=\operatorname{lsim}(t f G, r v E)$
Recover $N(z), D(z)$
$\gg[r v N, r v D]=$ tfdata(tfG, 'v')
From TF to SS
$\gg S S G=S S(t f G)$
From TF to ZPK
>> zpkG = zpk(tfG)

Q Practice time 1!

Ex 1.1. Create a function

$$
[\mathrm{bS}, \mathrm{bMP}]=\text { checkTFStability(tfG) }
$$

that has as input a causal scalar discrete-time transfer function object tfG. The function returns

- boolean bS = true if any coprime representation of tfG is (strictly) stable, and bS = false otherwise,
- boolean bMP = true if any coprime representation of tfG is minimum phase, i.e. it is stable with marginally stable inverse, and bMP = false otherwise.
Then, test the function on the following TFs:

$$
G_{1}(z)=\frac{z(z+1)}{z^{2}+0.4 z-0.45}, G_{2}(z)=\frac{z^{2}-0.7 z+1}{z^{2}+0.4 z-0.45}, G_{3}(z)=\frac{z+2}{z^{2}+2.5 z+1} .
$$

ด Practice time 1!

Ex 1.2. Create a function

plotSpectrum(tfG)

that has as input a causal scalar discrete-time transfer function tfG. The function plots the spectral density in the frequency interval $\theta \in[-\pi, \pi]$ of the process generated by filtering a Gaussian WN process ($\mu=0, \sigma=1$) through tfG . If tfG has poles on the unit circle, the function throws an error and displays an error message.

Then, test the function on the TFs of Ex. 1.1.

Extra question. What happens if $\sigma \neq 1$?

Today's Lab

Wiener Filtering \& Applications

(2) MATLAB ${ }^{\oplus}$ tools for Wiener filtering

- Quick recap
- Computing integrals via residues
- Computing causal and anticausal parts

Wiener filtering

Setup

$\{x(t)\}_{t \in \mathbb{Z}}$: stationary input process

$\{n(t)\}_{t \in \mathbb{Z}}$: stationary external noise $\left[\begin{array}{cc}\Phi_{x} & \Phi_{x y} \\ \Phi_{x y}^{*} & \Phi_{y}\end{array}\right]$
$\{y(t)\}_{t \in \mathbb{Z}}$: stationary output process $\longrightarrow \uparrow$
Joint spectrum

Wiener filtering

Wiener estimate

$$
\begin{aligned}
& H(z):=\left[\frac{\Phi_{x y}(z)}{W_{y}\left(z^{-1}\right)}\right]_{+} \frac{1}{W_{y}(z)} \\
& \Phi_{y}\left(e^{j \theta}\right)=W_{y}\left(e^{j \theta}\right) W_{y}\left(e^{-j \theta}\right)
\end{aligned}
$$

Wiener filtering

Wiener estimate

$$
\begin{aligned}
& H(z):=\left[\frac{\Phi_{x y}(z)}{W_{y}\left(z^{-1}\right)}\right]_{+} \frac{1}{W_{y}(z)} \\
& \Phi_{y}\left(e^{j \theta}\right)=W_{y}\left(e^{j \theta}\right) W_{y}\left(e^{-j \theta}\right)
\end{aligned}
$$

Wiener filtering

Wiener estimate

$$
\begin{aligned}
& H(z):=\left[\frac{\Phi_{x y}(z)}{W_{y}\left(z^{-1}\right)}\right]_{+} \frac{1}{W_{y}(z)} \\
& \Phi_{y}\left(e^{j \theta}\right)=W_{y}\left(e^{j \theta}\right) W_{y}\left(e^{-j \theta}\right)
\end{aligned}
$$

$$
\operatorname{Var} \tilde{x}(t \mid t)=\int_{-\pi}^{\pi}\left(\Phi_{x}\left(e^{j \theta}\right)-H^{\varepsilon}\left(e^{j \theta}\right) H^{\varepsilon}\left(e^{-j \theta}\right)\right) \frac{d \theta}{2 \pi}
$$

estimation error variance

Wiener filtering in practice

How to perform spectral factorization?

How to compute the causal and (strictly) anticausal part of a rational function?

How to compute the integral of a rational function upon the unit circle?

Wiener filtering in practice

How to compute the causal and (strictly) anticausal part of a rational function?

How to compute the integral of a rational function upon the unit circle?

Computing integrals via residues

Let $G(z)=N(z) / D(z)$ be a scalar rational function. We can decompose $G(z)$ using partial fraction expansion

$$
G(z)=\sum_{i=1}^{n_{p}} \sum_{j=1}^{\mu_{i}} \frac{R_{i j}}{\left(z-p_{i}\right)^{j}}+k_{n_{\infty}} z^{n_{\infty}}+\cdots+k_{1} z+k_{0}
$$

- $\left\{p_{i}\right\}_{i=1}^{n_{p}}$ are the poles of $G(z)$ and $\left\{\mu_{i}\right\}_{i=1}^{n_{p}}$ the corresponding multiplicities
- $R_{i j}$ are (in general, complex) coefficients corresponding to the term of multiplicity μ_{j} of the pole p_{i}
- $n_{\infty}=\max \{\operatorname{deg} N(z)-\operatorname{deg} D(z), 0\}$

Computing integrals via residues

The coefficients $R_{i j}$ are called residues* and are of crucial importance in complex analysis.

If p_{i} has multiplicity $\mu_{i}=1$, then

$$
R_{i 1}=\lim _{z \rightarrow p_{i}} G(z)\left(z-p_{i}\right)
$$

If p_{i} has multiplicity $\mu_{i}>1$, then

$$
R_{i j}=\frac{1}{\left(\mu_{i}-j\right)!} \lim _{z \rightarrow p_{i}}\left[\frac{\mathrm{~d}^{\mu_{i}-j}}{\mathrm{~d} z^{\mu_{i}-j}} G(z)\left(z-p_{i}\right)^{\mu_{i}}\right], j=1, \ldots, \mu_{i}
$$

[^0]
Computing integrals via residues

Let $F(z)$ be a rational function analytic on the unit circle. The computation of the integral of $F(z)$ upon the unit circle boils down to

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} F\left(e^{j \theta}\right) \mathrm{d} \theta=\frac{1}{2 \pi j} \oint_{|z|=1} \frac{F(z)}{z} \mathrm{~d} z=\sum_{i:\left|p_{i}\right|<1} R_{i 1}
$$

Hence, it suffices to

1 Compute the partial fraction expansion of $G(z)=F(z) / z$
2 Sum the (one-multiplicity) residues $R_{i 1}$ of poles p_{i} s.t. $\left|p_{i}\right|<1$

Computing integrals via residues

...in MATLAB ${ }^{\oplus}$

$$
\gg[c v R, c v P, r v K]=r e s i d u e(r v N, r v D)
$$

- $\mathrm{cvR}=\left[\begin{array}{lllll}R_{11} & R_{12} & \ldots & R_{1 \mu_{1}} & R_{21}\end{array} \ldots\right]^{\top}$
- $\mathrm{cvP}=\left[\begin{array}{lllllll}p_{1} & p_{1} & \ldots & p_{1} & p_{2} & \ldots\end{array}\right]^{\top}$ (every p_{i} is repeated μ_{i} times!)
- $\operatorname{rvK}=\left[\begin{array}{lll}k_{n_{\infty}} & \ldots & k_{1} \\ k_{0}\end{array}\right]$

Computing integrals via residues

...in MATLAB ${ }^{\circledR}$

$$
\begin{aligned}
& \gg[c v R, c v P, r v K]=\text { residue }(r v N, r v D) \\
& \gg[r v N, r v D]=\text { residue }(c v R, c v P, r v K)
\end{aligned}
$$

- $\mathrm{cvR}=\left[\begin{array}{llllll}R_{11} & R_{12} & \ldots & R_{1 \mu_{1}} & R_{21} & \ldots\end{array}\right]^{\top}$
- $\mathrm{cvP}=\left[\begin{array}{lllllll}p_{1} & p_{1} & \ldots & p_{1} & p_{2} & \ldots\end{array}\right]^{\top}$ (every p_{i} is repeated μ_{i} times!)
- $\operatorname{rvK}=\left[\begin{array}{lll}k_{n_{\infty}} & \ldots & k_{1} \\ k_{0}\end{array}\right]$

Computing causal and anticausal parts

Let $G(z)=N(z) / D(z)$ be a scalar rational function analytic on the unit circle. We can decompose $G(z)$ as

$$
\begin{aligned}
G(z) & =\sum_{i=1}^{n_{p}} \sum_{j=1}^{\mu_{i}} \frac{R_{i j}}{\left(z-p_{i}\right)^{j}}+k_{n_{\infty}} z^{n_{\infty}}+\cdots+k_{1} z+k_{0} \\
& =\sum_{i:\left|p_{i}\right|<1} \operatorname{Res}_{i}(z)+k_{0}^{+}+k_{0}^{-}+\sum_{i:\left|p_{i}\right|>1} \operatorname{Res}_{i}(z)+\sum_{i=1}^{n_{\infty}} k_{i} z^{i}
\end{aligned}
$$

where $\operatorname{Res}_{i}(z):=\sum_{j=1}^{\mu_{i}} \frac{R_{i j}}{\left(z-p_{i}\right)^{j}}, k_{0}=k_{0}^{+}+k_{0}^{-}$with

$$
k_{0}^{-}:=-\sum_{\left|p_{i}\right|>1} \operatorname{Res}_{i}(0)
$$

Computing causal and anticausal parts

Let $G(z)=N(z) / D(z)$ be a scalar rational function analytic on the unit circle. We can decompose $G(z)$ as

$$
\begin{aligned}
& G(z)=\sum_{i=1}^{n_{p}} \sum_{j=1}^{\mu_{i}} \frac{R_{i j}}{\left(z-p_{i}\right)^{j}}+k_{n_{\infty}} z^{n_{\infty}}+\cdots+k_{1} z+k_{0} \\
&= \sum_{i:\left|p_{i}\right|<1} \operatorname{Res}_{i}(z)+k_{0}^{+}+k_{0}^{-}+\sum_{i:\left|p_{i}\right|>1} \operatorname{Res}_{i}(z)+\sum_{i=1}^{n_{\infty}} k_{i} z^{i} \\
& {[G(z)]_{+} } \\
&\text {causal part } \quad[G(z)]]_{-}
\end{aligned}
$$

Computing causal and anticausal parts

Let $G(z)=N(z) / D(z)$ be a scalar rational function analytic on the unit circle. We can decompose $G(z)$ as

$$
\begin{aligned}
& G(z)=\sum_{i=1}^{n_{p}} \sum_{j=1}^{\mu_{i}} \frac{R_{i j}}{\left(z-p_{i}\right)^{j}}+k_{n_{\infty}} z^{n_{\infty}}+\cdots+k_{1} z+k_{0} \\
&= \sum_{i:\left|p_{i}\right|<1} \operatorname{Res}_{i}(z)+k_{0}^{+}+k_{0}^{-}+\sum_{i:\left|p_{i}\right|>1} \operatorname{Res}_{i}(z)+\sum_{i=1}^{n_{\infty}} k_{i} z^{i} \\
& {[G(z)]_{+} } \\
& \text {causal part } {[[G(z)]]_{-} }
\end{aligned}
$$

Moral: $[G(z)]_{+}$and $[[G(z)]]_{-}$can be computed using residues!

Q Practice time 2!

Ex 2.1. Create a function

$$
\text { dInt }=\text { resIntegral(tfF) }
$$

that has as input a rational transfer function object $t f F$. The function returns the integral dInt upon the unit circle of tfF computed via the residue method.

Recall: $\quad \frac{1}{2 \pi} \int_{-\pi}^{\pi} F\left(e^{j \theta}\right) \mathrm{d} \theta=\frac{1}{2 \pi j} \oint_{|z|=1} \frac{F(z)}{z} \mathrm{~d} z=\sum_{i:\left|p_{i}\right|<1} R_{i 1}$

Q Practice time 2!

Ex 2.2. Create a function
[tfCaus,tfACaus] = causalPart(tfG)
that has as input a rational transfer function object $t f G$. The function returns the causal part tfCaus and the strictly anticausal part $t f A C a u s$ of $t f G$.

Recall: $G(z)=\underbrace{\sum_{i:\left|p_{i}\right|<1} \operatorname{Res}_{i}(z)+k_{0}^{+}}_{[G(z)]_{+}}+\underbrace{k_{0}^{-}+\sum_{i:\left|p_{i}\right|>1} \operatorname{Res}_{i}(z)+\sum_{i=1}^{n_{\infty}} k_{i} z^{i}}_{[[G(z)]]-}$

[^0]: *Mathematically speaking, the residues are only the coefficients $R_{i 1}$'s.

