The Controllability Gramian of Line Networks: Closed-Form Expressions and Asymptotic Transitions

Giacomo Baggio and Sandro Zampieri

Abstract

In this technical note, we establish closed-form expressions of the entries of the (output) controllability Gramian of a class of bidirectional line networks. Also, we characterize the asymptotic behavior of these entries in two important cases.

I. Problem formulation

We consider networks governed by linear time-invariant continuous-time dynamics

$$
\begin{align*}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t) \tag{1}
\end{align*}
$$

where $x(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}^{m}, y(t) \in \mathbb{R}^{p}$ denote the vectors of nodes' states, inputs, and outputs at time t, respectively. The matrix $A \in \mathbb{R}^{n \times n}$ denotes the (weighted and directed) adjacency matrix of the network, and $B \in \mathbb{R}^{n \times m}$ and $C \in$ $\mathbb{R}^{p \times m}$ are the input and output matrices, respectively. These matrices are chosen so as to single out prescribed sets of input and output nodes of the network, that is,

$$
B=\left[\begin{array}{lll}
\mathrm{e}_{k_{1}} & \cdots & \mathrm{e}_{k_{m}}
\end{array}\right], \quad C=\left[\begin{array}{lll}
\mathrm{e}_{t_{1}} & \cdots & \mathrm{e}_{t_{p}} \tag{2}
\end{array}\right]^{\top},
$$

where $\mathcal{K}=\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}$ and $\mathcal{T}=\left\{t_{1}, t_{2}, \ldots, t_{p}\right\}$ are the sets of input and output nodes, respectively, and $\left\{\mathrm{e}_{i}\right\}_{i=1}^{n}$ denote the vectors of the canonical basis of \mathbb{R}^{n}.

If A is Hurwitz stable, the infinite-horizon output controllability Gramian of (1) is well-defined and given by

$$
\begin{equation*}
\mathcal{W}=\int_{0}^{\infty} C e^{A t} B B^{\top} e^{A^{\top} t} C^{\top} \mathrm{d} t \tag{3}
\end{equation*}
$$

The (output) controllability Gramian is linked to the controllability properties of the network, in that its eigenvalues describe how much control energy is needed to reach different output directions using a minimum-norm control input [].

In this note, we analyze the output controllability Gramian of a simple yet insightful class of networks. Namely, we consider bidirectional line networks which are described by the following Toeplitz adjacency matrix

$$
A=\left[\begin{array}{ccccc}
\gamma & \beta / \alpha & 0 & \cdots & 0 \tag{4}\\
\beta \alpha & \gamma & \beta / \alpha & & \vdots \\
0 & \beta \alpha & \gamma & \ddots & 0 \\
\vdots & & \ddots & \ddots & \beta / \alpha \\
0 & \cdots & 0 & \beta \alpha & \gamma
\end{array}\right]
$$

[^0]where $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$ are positive parameters and $\gamma \in \mathbb{R}$ is chosen such that $\gamma<-2 \beta$ so as to enforce stability. Notice that the parameter α quantifies, in a sense, the "degree" of directionality of the network. Indeed, the larger α the stronger is the connection from node i to node $i+1$ and the weaker is the connection in the opposite direction. Thus, the network in (4) represents a simple, prototypical architecture in which the effects of directionality (or, in algebraic terms, non-normality) and stability are completely decoupled and can be freely tuned. More precisely, the directionality is regulated by parameter α, whereas the eigenvalues are determined by parameters β and γ. Finally, for later use, we observe that A can be rewritten as
\[

$$
\begin{equation*}
A=D S D^{-1} \tag{5}
\end{equation*}
$$

\]

where

$$
S=\left[\begin{array}{ccccc}
\gamma & \beta & 0 & \cdots & 0 \tag{6}\\
\beta & \gamma & \beta & & \vdots \\
0 & \beta & \gamma & \ddots & 0 \\
\vdots & & \ddots & \ddots & \beta \\
0 & \cdots & 0 & \beta & \gamma
\end{array}\right]
$$

is a symmetric matrix featuring the same spectrum of A, and $D=\operatorname{diag}\left[\begin{array}{llll}1 & \alpha & \alpha^{2} & \cdots\end{array} \alpha^{n-1}\right]$ a diagonal matrix whose diagonal encodes the degree of directionality of the network.

II. Finite-size analysis of \mathcal{W}

In this section, we establish a closed-form expression of the controllability Gramian (3).

Theorem 1: (Closed-form expression of \mathcal{W}) Consider the output controllability Gramian (3) where A is as in (4), and B and C are as in (2). For all $i, j \in\{1, \ldots, p\}$, it holds

$$
\begin{align*}
{[\mathcal{W}]_{i j}=- } & \frac{2}{N^{2}} \sum_{k \in \mathcal{K}} \sum_{\ell=1}^{N-1} \sum_{h=1}^{N-1} \frac{\alpha^{t_{i}+t_{j}-2 k}}{\gamma+\beta\left(\cos \left(x_{\ell}\right)+\cos \left(x_{h}\right)\right)} \\
& \cdot \sin \left(t_{i} x_{\ell}\right) \sin \left(k x_{\ell}\right) \sin \left(t_{j} x_{h}\right) \sin \left(k x_{h}\right) \tag{7}
\end{align*}
$$

where $x_{i}:=i \pi / N, i=1, \ldots, N-1$, and $N:=n+1$.
Before presenting the proof of Theorem (1), we state an instrumental lemma, whose proof can be found in, e.g., [1, Ex. 7.2.5].
Lemma 2: (Eigenvalues and eigenvectors of S) The matrix S as defined in (6) admits the spectral decomposition

$$
\begin{equation*}
S=V^{\top} \Lambda V \tag{8}
\end{equation*}
$$

where $\Lambda=\operatorname{diag}\left[\begin{array}{lll}\lambda_{1} & \cdots & \lambda_{n}\end{array}\right]$ is a diagonal matrix containing the eigenvalues of S

$$
\begin{equation*}
\lambda_{k}=\gamma+2 \beta \cos \left(\frac{k \pi}{n+1}\right), \quad k \in\{1, \ldots, n\} \tag{9}
\end{equation*}
$$

and the columns of $V=\left[\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right]$ the corresponding (normalized) eigenvectors

$$
v_{k}=\sqrt{\frac{2}{n+1}}\left[\begin{array}{c}
\sin \left(\frac{k \pi}{n+1}\right) \tag{10}\\
\sin \left(\frac{2 k \pi}{n+1}\right) \\
\vdots \\
\sin \left(\frac{n k \pi}{n+1}\right)
\end{array}\right], \quad k \in\{1, \ldots, n\}
$$

Proof of Theorem 17. In view of the definition of B in (2), it follows that $\overrightarrow{B B^{\top}}=\sum_{k \in \mathcal{K}} \mathrm{e}_{k} \mathrm{e}_{k}^{\top}$. Thus, we can rewrite \mathcal{W} as

$$
\begin{align*}
\mathcal{W} & =\int_{0}^{\infty} C e^{A t} B B^{\top} e^{A^{\top} t} C^{\top} \mathrm{d} t \\
& =\int_{0}^{\infty} C e^{A t}\left(\sum_{k \in \mathcal{K}} \mathrm{e}_{k} \mathrm{e}_{k}^{\top}\right) e^{A^{\top} t} C^{\top} \mathrm{d} t \\
& =\sum_{k \in \mathcal{K}} \int_{0}^{\infty} C e^{A t} \mathrm{e}_{k} \mathrm{e}_{k}^{\top} e^{A^{\top} t} C^{\top} \mathrm{d} t \tag{11}
\end{align*}
$$

From the definition of C in (2), the (i, j)-th entry of \mathcal{W} reads

$$
\begin{equation*}
[\mathcal{W}]_{i j}=\sum_{k \in \mathcal{K}} \mathrm{e}_{t_{i}}^{\top}\left(\int_{0}^{\infty} e^{A t} \mathrm{e}_{k} \mathrm{e}_{k}^{\top} e^{A^{\top} t} \mathrm{~d} t\right) \mathrm{e}_{t_{j}} \tag{12}
\end{equation*}
$$

Next, by using the decomposition of A in (5), we have

$$
\begin{align*}
{[\mathcal{W}]_{i j} } & =\sum_{k \in \mathcal{K}} \mathrm{e}_{t_{i}}^{\top}\left(\int_{0}^{\infty} D e^{S t} D^{-1} \mathrm{e}_{k} \mathrm{e}_{k}^{\top} D^{-1} e^{S t} D \mathrm{~d} t\right) \mathrm{e}_{t_{j}} \\
& =\sum_{k \in \mathcal{K}} \frac{1}{\alpha^{2(k-1)}} \mathrm{e}_{t_{i}}^{\top} D\left(\int_{0}^{\infty} e^{S t} \mathrm{e}_{k} \mathrm{e}_{k}^{\top} e^{S t} \mathrm{~d} t\right) D \mathrm{e}_{t_{j}} \\
& =\sum_{k \in \mathcal{K}} \frac{\alpha^{t_{i}+t_{j}-2}}{\alpha^{2(k-1)}}\left(\int_{0}^{\infty} \mathrm{e}_{t_{i}}^{\top} e^{S t} \mathrm{e}_{k} \mathrm{e}_{k}^{\top} e^{S t} \mathrm{e}_{t_{j}} \mathrm{~d} t\right) \tag{13}
\end{align*}
$$

Now, we focus on the integral terms in 13, that is,

$$
\begin{equation*}
I_{i j k}=\int_{0}^{\infty} \mathrm{e}_{t_{i}}^{\top} e^{S t} \mathrm{e}_{k} \mathrm{e}_{k}^{\top} e^{S t} \mathrm{e}_{t_{j}} \mathrm{~d} t \tag{14}
\end{equation*}
$$

By Lemma 2, it holds

$$
\begin{align*}
I_{i j k} & =\int_{0}^{\infty} \mathrm{e}_{t_{i}}^{\top} V^{\top} e^{\Lambda t} V \mathrm{e}_{k} \mathrm{e}_{k}^{\top} V^{\top} e^{\Lambda t} V \mathrm{e}_{t_{j}} \mathrm{~d} t \\
& =\int_{0}^{\infty} v_{t_{i}}^{\top} e^{\Lambda t} v_{k} v_{k}^{\top} e^{\Lambda t} v_{t_{j}} \mathrm{~d} t . \tag{15}
\end{align*}
$$

Note that, by direct computation,

$$
\begin{align*}
& v_{h}^{\top} e^{\Lambda t} v_{k}=\frac{2}{n+1} . \\
& {\left[\begin{array}{c}
\sin \left(\frac{h \pi}{n+1}\right) \\
\vdots \\
\sin \left(\frac{n h \pi}{n+1}\right)
\end{array}\right]^{\top}\left[\begin{array}{lll}
e^{\lambda_{1} t} & & \\
& e^{\lambda_{1} t} & \\
& & \ddots \\
& & \\
=\frac{2}{n+1} \sum_{\ell=1}^{n} e^{\lambda_{\ell} t} \sin \left(\frac{\ell h \pi}{n+1}\right) \sin \left(\frac{\ell k \pi}{n+1}\right)
\end{array},\left[\begin{array}{c}
\sin \left(\frac{k \pi}{n+1}\right) \\
\vdots \\
\sin \left(\frac{n k \pi}{n+1}\right)
\end{array}\right]\right.}
\end{align*}
$$

which plugged into (15) yields

$$
\begin{align*}
& I_{i j k}= \int_{0}^{\infty} v_{t_{i}}^{\top} e^{\Lambda t} v_{k} v_{k}^{\top} e^{\Lambda t} v_{t_{j}} \mathrm{~d} t \\
&= \frac{4}{(n+1)^{2}} \sum_{\ell=1}^{n} \sum_{h=1}^{n} \sin \left(\frac{\ell t_{i} \pi}{n+1}\right) \sin \left(\frac{\ell k \pi}{n+1}\right) . \\
& \cdot \sin \left(\frac{h t_{j} \pi}{n+1}\right) \sin \left(\frac{h k \pi}{n+1}\right) \int_{0}^{\infty} e^{\left(\lambda_{\ell}+\lambda_{h}\right) t} \mathrm{~d} t \\
&=-\frac{4}{(n+1)^{2}} \sum_{\ell=1}^{n} \sum_{h=1}^{n} \frac{1}{\lambda_{h}+\lambda_{\ell}} \sin \left(\frac{\ell t_{i} \pi}{n+1}\right) . \\
& \cdot \sin \left(\frac{\ell k \pi}{n+1}\right) \sin \left(\frac{h t_{j} \pi}{n+1}\right) \sin \left(\frac{h k \pi}{n+1}\right) \\
&=-\frac{2}{(n+1)^{2}} \sum_{\ell=1}^{n} \sum_{h=1}^{n} \frac{1}{\gamma+\beta\left(\cos \left(\frac{\ell \pi}{n+1}\right)+\cos \left(\frac{h \pi}{n+1}\right)\right)} . \\
& \cdot \sin \left(\frac{\ell t_{i} \pi}{n+1}\right) \sin \left(\frac{\ell k \pi}{n+1}\right) \sin \left(\frac{h t_{j} \pi}{n+1}\right) \sin \left(\frac{h k \pi}{n+1}\right), \tag{17}
\end{align*}
$$

where in the second step we used the fact that $\int_{0}^{\infty} e^{\left(\lambda_{\ell}+\lambda_{h}\right) t}=\frac{1}{\lambda_{\ell}+\lambda_{h}}$, and in the last step the analytic expression of $\lambda_{k}, k \in\{1, \ldots, n\}$, in Lemma 2 Finally, equation (7) follows by substituting (17) into (13).

An interesting scenario is when the input signal enters the network from the first node of the network $(\mathcal{K}=\{1\})$. In this case, two extreme input/output configurations are when the input and output nodes coincide $(\mathcal{K}=\{1\}$ and $\mathcal{T}=\{1\})$, and when they are placed as far away as possible $(\mathcal{K}=\{1\}$ and $\mathcal{T}=\{n\})$. In these two extreme cases, it is possible to establish simplified versions of the expressions in Theorem 1 .

Corollary 3: (Closed-form expression of \mathcal{W} for $\mathcal{K}=\{1\}$ and $\mathcal{T}=\{1\}$) Consider the output controllability Gramian (3) where A is as in (4), and B and C are as in (2). Further, let $x_{i}:=i \pi / N, i=1, \ldots, N-1$, and $N:=n+1$. If $\mathcal{K}=\{1\}$ and $\mathcal{T}=\{1\}$, then it holds

$$
\begin{equation*}
\mathcal{W}=-\frac{2}{N^{2}} \sum_{\ell=1}^{N-1} \sum_{h=1}^{N-1} \frac{\sin ^{2}\left(x_{\ell}\right) \sin ^{2}\left(x_{h}\right)}{\gamma+\beta\left(\cos \left(x_{\ell}\right)+\cos \left(x_{h}\right)\right)} \tag{18}
\end{equation*}
$$

Proof: Equation (18) directly follows by substituting $k=t_{i}=t_{j}=1$ in (7).

Corollary 4: (Closed-form expression of \mathcal{W} for $\mathcal{K}=\{1\}$ and $\mathcal{T}=\{n\}$) Consider the output controllability Gramian (3) where A is as in (4), and B and C are as in (2). Further,
let $x_{i}:=i \pi / N, i=1, \ldots, N-1$, and $N:=n+1$. If $\mathcal{K}=\{1\}$ and $\mathcal{T}=\{n\}$, then it holds

$$
\begin{equation*}
\mathcal{W}=-\frac{2 \alpha^{2(N-2)}}{N^{2}} \sum_{\ell=1}^{N-1} \sum_{h=1}^{N-1} \frac{(-1)^{\ell+h} \sin ^{2}\left(x_{\ell}\right) \sin ^{2}\left(x_{h}\right)}{\gamma+\beta\left(\cos \left(x_{\ell}\right)+\cos \left(x_{h}\right)\right)} \tag{19}
\end{equation*}
$$

Proof: By letting $k=1$ and $t_{i}=t_{j}=n$, equation (7) takes the form

$$
\begin{align*}
\mathcal{W}= & -\frac{2}{N^{2}} \sum_{\ell=1}^{N-1} \sum_{h=1}^{N-1} \frac{\alpha^{2(n-1)}}{\gamma+\beta\left(\cos \left(\frac{\ell \pi}{N}\right)+\cos \left(\frac{h \pi}{N}\right)\right)} \\
& \cdot \sin \left(\frac{\ell n \pi}{N}\right) \sin \left(\frac{\ell \pi}{N}\right) \sin \left(\frac{h n \pi}{N}\right) \sin \left(\frac{h \pi}{N}\right) \tag{20}
\end{align*}
$$

and equation 19 follows from 20 by using the identity

$$
\begin{aligned}
\sin \left(\frac{q n \pi}{N}\right) & =\sin \left(-\frac{q \pi}{n+1}+q \pi\right) \\
& =(-1)^{q+1} \sin \left(\frac{q \pi}{N}\right), \quad q \in \mathbb{Z}
\end{aligned}
$$

III. Asymptotic analysis of \mathcal{W}

In this section, we study the large n asymptotic behavior of the controllability Gramian (3) for the line network in (4) and the two extreme scenarios discussed in Corollaries 3 and 4, that is, when the input and output nodes coincide $(\mathcal{K}=\{1\}$ and $\mathcal{T}=\{1\})$, and when are placed as far away as possible $(\mathcal{K}=\{1\}$ and $\mathcal{T}=\{n\})$.

Theorem 5: (Asymptotic behavior for $\mathcal{K}=\mathcal{T}=\{1\}$) Consider the output controllability Gramian (3) where A is as in (4), and B and C are as in (2). If $\mathcal{K}=\{1\}$ and $\mathcal{T}=\{1\}$, then as $n \rightarrow \infty, \mathcal{W}$ converges to a positive constant satisfying

$$
\begin{equation*}
\frac{\pi^{2}}{-2 \gamma+4 \beta} \leq \mathcal{W} \leq \frac{\pi^{2}}{-2 \gamma-4 \beta} \tag{21}
\end{equation*}
$$

Proof: Note that (18) can be equivalently written as

$$
\begin{equation*}
\mathcal{W}=-\frac{2}{N^{2}} \sum_{\ell=0}^{N-1} \sum_{h=0}^{N-1} \frac{\sin ^{2}\left(x_{\ell}\right) \sin ^{2}\left(x_{h}\right)}{\gamma+\beta\left(\cos \left(x_{\ell}\right)+\cos \left(x_{h}\right)\right)} \tag{22}
\end{equation*}
$$

where we used the fact that the terms in the summation corresponding to the indices $\ell=0$ and $h=0$ vanish. In the limit $n \rightarrow \infty$, equation (22) converges to the integral

$$
\begin{equation*}
\mathcal{W}=-2 \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{\sin ^{2}(x) \sin ^{2}(y)}{\gamma+\beta(\cos (x)+\cos (y))} \mathrm{d} x \mathrm{~d} y \tag{23}
\end{equation*}
$$

Since $-\gamma-2 \beta \leq \gamma+\beta(\cos (x)+\cos (y)) \leq-\gamma+2 \beta$, we can bound the integral (23) as

$$
\begin{equation*}
\frac{2 I}{-\gamma+2 \beta} \leq \mathcal{W} \leq \frac{2 I}{-\gamma-2 \beta} \tag{24}
\end{equation*}
$$

with $I:=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \sin ^{2}(x) \sin ^{2}(y) \mathrm{d} x \mathrm{~d} y=\pi^{2} / 4$, from which (21) follows.

When $\mathcal{K}=\mathcal{T}=\{1\}$, Corollary 5 guarantees that the Gramian is always bounded and independent of n. Further, for very stable networks (large $|\gamma|$), the inequalities in 21) yields the estimate $\mathcal{W} \sim-\pi^{2} /(2 \gamma)$.

Theorem 6: (Asymptotic behavior for $\mathcal{K}=\{1\}$ and $\mathcal{T}=$ $\{n\}$) Consider the output controllability Gramian (3) where A is as in 44, and B and C are as in (2). If $\mathcal{K}=\{1\}$ and $\mathcal{T}=\{n\}$, then as $n \rightarrow \infty$ it holds

$$
\begin{equation*}
\mathcal{W} \sim \frac{\mu}{\sqrt{n}}\left(\alpha\left(\kappa-\sqrt{\kappa^{2}-1}\right)\right)^{2 n} \tag{25}
\end{equation*}
$$

where $\kappa:=-\gamma /(2 \beta)>1$ and $\mu>0$ is a real constant independent of n and depending only on α, β and γ.

To prove Theorem 6, we will make use of the following lemma, that has been adapted from [2, Sec. 4(b)].

Lemma 7: Let $n>0$ and $\kappa>1$ be real numbers. Then, as $n \rightarrow \infty$,

$$
\begin{align*}
& \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{e^{-\mathrm{i} n(x+y)}}{2 \kappa-\cos (x)-\cos (y)} \mathrm{d} x \mathrm{~d} y \\
& \sim \frac{\xi}{\sqrt{n}}\left(\kappa-\sqrt{\kappa^{2}-1}\right)^{2 n} \tag{26}
\end{align*}
$$

where $\xi:=1 /\left(2 \sqrt{\pi \kappa}\left(\kappa^{2}-1\right)^{1 / 4}\right)$.
Proof of Theorem 6. Let $N:=n+1$ and define

$$
\begin{equation*}
\Psi(x, y):=\frac{1}{\beta} \frac{\sin ^{2}(2 \pi x) \sin ^{2}(2 \pi y)}{2 \kappa-\cos (2 \pi x)-\cos (2 \pi y)} . \tag{27}
\end{equation*}
$$

In view of Corollary 4, we can write \mathcal{W} as

$$
\begin{equation*}
\mathcal{W}=\frac{2 \alpha^{2(N-2)}}{N^{2}} \sum_{\ell=1}^{N-1} \sum_{h=1}^{N-1}(-1)^{\ell+h} \Psi\left(\frac{\ell}{2 N}, \frac{h}{2 N}\right) \tag{28}
\end{equation*}
$$

Notice that $\Psi(x, y)=\Psi(-x, y)=\Psi(x,-y)=\Psi(-x,-y)$ and $\Psi(0, y)=\Psi(1 / 2, y)=\Psi(x, 0)=\Psi(x, 1 / 2)=0$. Therefore, we can rewrite 28) as

$$
\begin{equation*}
\mathcal{W}=\frac{\alpha^{2(N-2)}}{2 N^{2}} \sum_{\ell=1}^{2 N} \sum_{h=1}^{2 N}(-1)^{\ell+h} \Psi\left(\frac{\ell}{2 N}, \frac{h}{2 N}\right) \tag{29}
\end{equation*}
$$

The latter equation follows from the fact that each term in (28) appears four times in 29) and the additional terms corresponding to indices $\ell, h \in\{N, 2 N\}$ vanish. Next, we can express it in terms of the 2D Fourier series

$$
\begin{equation*}
\Psi(x, y):=\sum_{r, s \in \mathbb{Z}} \psi_{r, s} e^{2 \pi \mathrm{i}(r x+s y)} \tag{30}
\end{equation*}
$$

which converges absolutely since $\Psi(x, y)$ is smooth, and substitute the latter series in 29). By doing so, we obtain

$$
\begin{align*}
\mathcal{W} & =\frac{\alpha^{2(N-2)}}{2 N^{2}} \sum_{\ell=1}^{2 N} \sum_{h=1}^{2 N}(-1)^{\ell+h} \sum_{r, s \in \mathbb{Z}} \psi_{r, s} e^{2 \pi \mathrm{i}\left(\frac{r \ell}{2 N}+\frac{s h}{2 N}\right)} \\
& =\frac{\alpha^{2(N-2)}}{2 N^{2}} \sum_{r, s \in \mathbb{Z}} \psi_{r, s} \sum_{\ell=1}^{2 N}(-1)^{\ell} e^{2 \pi \mathrm{i} \frac{r \ell}{2 N}} \sum_{h=1}^{2 N}(-1)^{h} e^{2 \pi \mathrm{i} \frac{s h}{2 N}} \\
& =2 \alpha^{2(N-2)} \sum_{r, s \in \mathbb{Z}} \psi_{N(2 r+1), N(2 s+1)} \tag{31}
\end{align*}
$$

where in the last step we used the identity, $q \in \mathbb{Z}$,

$$
\sum_{h=1}^{2 N}(-1)^{h} e^{2 \pi q \frac{h}{2 N}}= \begin{cases}2 N, & \text { if } h=N \bmod 2 N \\ 0, & \text { otherwise }\end{cases}
$$

The Fourier coefficients in 30 read as

$$
\begin{align*}
& \psi_{N(2 r+1), N(2 s+1)}= \\
& \frac{1}{4 \pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \bar{\Psi}(x, y) e^{-\mathrm{i} N((2 r+1) x+(2 s+1) y)} \mathrm{d} x \mathrm{~d} y \tag{32}
\end{align*}
$$

where $\bar{\Psi}(x, y):=\Psi(x / 2 \pi, y / 2 \pi)$. Notice that the function $\bar{\Psi}(x, y)$ can be extended to a complex analytic function in the complex strip $\{x, y \in \mathbb{C}:|\operatorname{Im}(x)| \leq K,|\operatorname{Im}(y)| \leq$ $K\}$, where $K:=\cosh ^{-1}(\kappa)=\ln \left(\kappa+\sqrt{\kappa^{2}-1}\right)$. Thus, as a consequence of the Paley-Wiener Theorem (e.g., see [3, §VI.7]), the Fourier coefficients in (32) decay exponentially with a rate that satisfies, for all $\varepsilon>0$,

$$
\begin{align*}
\left|\psi_{N(2 r+1), N(2 s+1)}\right| & \leq M(\varepsilon) e^{-2 K N(r+s+1-\varepsilon)} \\
& \leq M(\varepsilon)\left(\kappa+\sqrt{\kappa^{2}-1}\right)^{-2 N(r+s+1-\varepsilon)} \\
& \leq M(\varepsilon)\left(\kappa-\sqrt{\kappa^{2}-1}\right)^{2 N(r+s+1-\varepsilon)} \tag{33}
\end{align*}
$$

where $M(\varepsilon)$ is a positive real constant depending only on ε and in the last step we used the identity $\left(\kappa+\sqrt{\kappa^{2}-1}\right)^{-1}=$ $\left(\kappa-\sqrt{\kappa^{2}-1}\right)$. We next show that the dominant (i.e., slowest decaying) coefficients are those corresponding to the "simplest" terms of the series 31), namely $\psi_{N, N}$, $\psi_{-N, N}, \psi_{N,-N}, \psi_{-N,-N}$. Since the Fourier coefficients satisfy $\psi_{r, s}=\psi_{-r, s}=\psi_{r,-s}=\psi_{-r,-s}$, the "simplest" four coefficients of the series (31) are all equal to $\psi_{N, N}$. By expanding the numerator of $\bar{\Psi}(x, y)$ in exponential form and using again the Paley-Wiener Theorem, we have

$$
\begin{align*}
& \psi_{N, N}=\frac{1}{4 \pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \bar{\Psi}(x, y) e^{-\mathrm{i} N(x+y)} \mathrm{d} x \mathrm{~d} y \\
& =\frac{1}{16 \pi^{2} \beta} \underbrace{\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{e^{-\mathrm{i} N(x+y)}}{2 \kappa-\cos (x)-\cos (y)} \mathrm{d} x \mathrm{~d} y}_{I(N)}+R \tag{34}
\end{align*}
$$

where, for all $\varepsilon>0$, and R is a real number satisfying $|R| \leq$ $L(\varepsilon)\left(\kappa-\sqrt{\kappa^{2}-1}\right)^{N(3-\varepsilon)}$ with $L(\varepsilon)$ being a positive real constant depending only on ε. Finally, by virtue of Lemma 7. the integral $I(N)$ features the large N asymptotic estimate

$$
\begin{equation*}
I(N) \sim \frac{\xi}{\sqrt{N}}\left(\kappa-\sqrt{\kappa^{2}-1}\right)^{2 N} \tag{35}
\end{equation*}
$$

where $\xi:=1 /\left(2 \sqrt{\pi \kappa}\left(\kappa^{2}-1\right)^{1 / 4}\right)$. Thus, from the latter estimate and the bounds in (33) and (34), it follows that,
for large N, 31) has the asymptotics

$$
\begin{align*}
\mathcal{W} & \sim 2 \alpha^{2(N-2)}\left(4 \psi_{N, N}\right) \\
& \sim 8 \alpha^{2(N-2)} I(N) \\
& \sim \frac{\xi \alpha^{2(N-2)}}{2 \pi^{2} \beta \sqrt{N}}\left(\kappa-\sqrt{\kappa^{2}-1}\right)^{2 N} \tag{36}
\end{align*}
$$

After some rearranging, the above expression yields the large n asymptotics (25).

As a consequence of Theorem 6, we have the following immediate result that characterizes the values of the parameters α, β, γ for which \mathcal{W} either converges to zero or grows unbounded as the network dimension n increases.

Corollary 8: (Asymptotic transition for $\mathcal{K}=\{1\}$ and $\mathcal{T}=\{n\})$ Consider the output controllability Gramian (3) where A is as in (4), and B and C are as in (2). If $\mathcal{K}=\{1\}$ and $\mathcal{T}=\{n\}$, then

$$
\lim _{n \rightarrow \infty} \mathcal{W}= \begin{cases}\infty & \text { if } \omega(A)>0 \tag{37}\\ 0 & \text { if } \omega(A) \leq 0\end{cases}
$$

where $\omega(A)=\lambda_{\max }\left(\left(A+A^{\top}\right) / 2\right)$.
Proof: From Theorem 6, we have

$$
\lim _{n \rightarrow \infty} \mathcal{W}= \begin{cases}\infty & \text { if } \alpha>\kappa+\sqrt{\kappa^{2}-1} \tag{38}\\ 0 & \text { if } 0<\alpha \leq \kappa+\sqrt{\kappa^{2}-1}\end{cases}
$$

where we used the identity $\left(\kappa+\sqrt{\kappa^{2}-1}\right)^{-1}=$ $\left(\kappa-\sqrt{\kappa^{2}-1}\right)$. As $n \rightarrow \infty$, it holds

$$
\begin{align*}
\omega(A) & =\gamma+\beta \alpha+\beta / \alpha \\
& =\frac{\beta}{\alpha}\left(\alpha^{2}-2 \kappa \alpha+1\right) \tag{39}
\end{align*}
$$

Thus, if $\omega(A)>0$ then $\alpha^{2}-2 \kappa \alpha+1>0$ which in turn yields $\alpha>\kappa+\sqrt{\kappa^{2}-1}$. Conversely, if $\omega(A) \leq 0$ then $\alpha^{2}-$ $2 \kappa \alpha+1 \leq 0$ which in turn yields $\alpha \leq \kappa+\sqrt{\kappa^{2}-1}$. Equation (37) now follows from the latter observations and 38).

References

[1] C. D. Meyer, Matrix analysis and applied linear algebra. SIAM, 2000, vol. 71.
[2] A. B. Movchan and L. I. Slepyan, "Band gap Green's functions and localized oscillations," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 463, no. 2086, pp. 2709-2727, 2007.
[3] Y. Katznelson, An introduction to harmonic analysis. Cambridge University Press, 2004.

[^0]: Giacomo Baggio (baggio@dei.unipd.it) and Sandro Zampieri are with the Department of Information Engineering, University of Padova, Italy.

