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Abstract— In this technical note, we establish closed-form ex-
pressions of the entries of the (output) controllability Gramian
of a class of bidirectional line networks. Also, we characterize
the asymptotic behavior of these entries in two important cases.

I. PROBLEM FORMULATION

We consider networks governed by linear time-invariant
continuous-time dynamics

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp denote the vectors
of nodes’ states, inputs, and outputs at time t, respectively.
The matrix A ∈ Rn×n denotes the (weighted and directed)
adjacency matrix of the network, and B ∈ Rn×m and C ∈
Rp×m are the input and output matrices, respectively. These
matrices are chosen so as to single out prescribed sets of
input and output nodes of the network, that is,

B =
[
ek1 · · · ekm

]
, C =

[
et1 · · · etp

]>
, (2)

where K = {k1, k2, . . . , km} and T = {t1, t2, . . . , tp} are
the sets of input and output nodes, respectively, and {ei}ni=1

denote the vectors of the canonical basis of Rn.
If A is Hurwitz stable, the infinite-horizon output control-

lability Gramian of (1) is well-defined and given by

W =

∫ ∞
0

CeAtBB>eA
>tC>dt. (3)

The (output) controllability Gramian is linked to the con-
trollability properties of the network, in that its eigenvalues
describe how much control energy is needed to reach differ-
ent output directions using a minimum-norm control input [].

In this note, we analyze the output controllability Gramian
of a simple yet insightful class of networks. Namely, we
consider bidirectional line networks which are described by
the following Toeplitz adjacency matrix

A =



γ β/α 0 · · · 0

βα γ β/α
...

0 βα γ
. . . 0

...
. . . . . . β/α

0 · · · 0 βα γ


, (4)
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where α ∈ R and β ∈ R are positive parameters and γ ∈ R
is chosen such that γ < −2β so as to enforce stability. Notice
that the parameter α quantifies, in a sense, the “degree”
of directionality of the network. Indeed, the larger α the
stronger is the connection from node i to node i + 1 and
the weaker is the connection in the opposite direction. Thus,
the network in (4) represents a simple, prototypical archi-
tecture in which the effects of directionality (or, in algebraic
terms, non-normality) and stability are completely decoupled
and can be freely tuned. More precisely, the directionality
is regulated by parameter α, whereas the eigenvalues are
determined by parameters β and γ. Finally, for later use, we
observe that A can be rewritten as

A = DSD−1, (5)

where

S =



γ β 0 · · · 0

β γ β
...

0 β γ
. . . 0

...
. . . . . . β

0 · · · 0 β γ


, (6)

is a symmetric matrix featuring the same spectrum of A,
and D = diag[1 α α2 · · · αn−1] a diagonal matrix whose
diagonal encodes the degree of directionality of the network.

II. FINITE-SIZE ANALYSIS OFW

In this section, we establish a closed-form expression of
the controllability Gramian (3).

Theorem 1: (Closed-form expression of W) Consider the
output controllability Gramian (3) where A is as in (4), and
B and C are as in (2). For all i, j ∈ {1, . . . , p}, it holds

[W]ij = − 2

N2

∑
k∈K

N−1∑
`=1

N−1∑
h=1

αti+tj−2k

γ + β (cos (x`) + cos (xh))
·

· sin (tix`) sin (kx`) sin (tjxh) sin (kxh) , (7)

where xi := iπ/N , i = 1, . . . , N − 1, and N := n+ 1.
Before presenting the proof of Theorem (1), we state an

instrumental lemma, whose proof can be found in, e.g., [1,
Ex. 7.2.5].

Lemma 2: (Eigenvalues and eigenvectors of S) The ma-
trix S as defined in (6) admits the spectral decomposition

S = V >ΛV, (8)
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where Λ = diag[λ1 · · · λn] is a diagonal matrix containing
the eigenvalues of S

λk = γ + 2β cos

(
kπ

n+ 1

)
, k ∈ {1, . . . , n}, (9)

and the columns of V =
[
v1 · · · vn

]
the corresponding

(normalized) eigenvectors

vk =

√
2

n+ 1


sin
(
kπ
n+1

)
sin
(

2kπ
n+1

)
...

sin
(
nkπ
n+1

)

 , k ∈ {1, . . . , n}. (10)

Proof of Theorem 1: In view of the definition of B
in (2), it follows that BB> =

∑
k∈K eke>k . Thus, we can

rewrite W as

W =

∫ ∞
0

CeAtBB>eA
>tC>dt

=

∫ ∞
0

CeAt

(∑
k∈K

eke>k

)
eA

>tC>dt

=
∑
k∈K

∫ ∞
0

CeAteke>k e
A>tC>dt. (11)

From the definition of C in (2), the (i, j)-th entry ofW reads

[W]ij =
∑
k∈K

e>ti

(∫ ∞
0

eAteke>k e
A>tdt

)
etj . (12)

Next, by using the decomposition of A in (5), we have

[W]ij =
∑
k∈K

e>ti

(∫ ∞
0

DeStD−1eke>k D
−1eStDdt

)
etj

=
∑
k∈K

1

α2(k−1)
e>tiD

(∫ ∞
0

eSteke>k e
Stdt

)
Detj

=
∑
k∈K

αti+tj−2

α2(k−1)

(∫ ∞
0

e>tie
Steke>k e

Stetjdt

)
. (13)

Now, we focus on the integral terms in (13), that is,

Iijk =

∫ ∞
0

e>tie
Steke>k e

Stetjdt. (14)

By Lemma 2, it holds

Iijk =

∫ ∞
0

e>tiV
>eΛtV eke>k V

>eΛtV etjdt

=

∫ ∞
0

v>ti e
Λtvkv

>
k e

Λtvtjdt. (15)

Note that, by direct computation,

v>h e
Λtvk =

2

n+ 1
·

·


sin
(
hπ
n+1

)
...

sin
(
nhπ
n+1

)

> 

eλ1t

eλ1t

. . .
eλnt




sin
(
kπ
n+1

)
...

sin
(
nkπ
n+1

)


=
2

n+ 1

n∑
`=1

eλ`t sin

(
`hπ

n+ 1

)
sin

(
`kπ

n+ 1

)
, (16)

which plugged into (15) yields

Iijk =

∫ ∞
0

v>ti e
Λtvkv

>
k e

Λtvtjdt

=
4

(n+ 1)2

n∑
`=1

n∑
h=1

sin

(
`tiπ

n+ 1

)
sin

(
`kπ

n+ 1

)
·

· sin
(
htjπ

n+ 1

)
sin

(
hkπ

n+ 1

)∫ ∞
0

e(λ`+λh)tdt

= − 4

(n+ 1)2

n∑
`=1

n∑
h=1

1

λh + λ`
sin

(
`tiπ

n+ 1

)
·

· sin
(
`kπ

n+ 1

)
sin

(
htjπ

n+ 1

)
sin

(
hkπ

n+ 1

)
= − 2

(n+ 1)2

n∑
`=1

n∑
h=1

1

γ+β
(
cos
(
`π
n+1

)
+cos

(
hπ
n+1

)) ·
· sin

(
`tiπ

n+ 1

)
sin

(
`kπ

n+ 1

)
sin

(
htjπ

n+ 1

)
sin

(
hkπ

n+ 1

)
,

(17)

where in the second step we used the fact that∫∞
0
e(λ`+λh)t = 1

λ`+λh
, and in the last step the analytic

expression of λk, k ∈ {1, . . . , n}, in Lemma 2. Finally,
equation (7) follows by substituting (17) into (13).

An interesting scenario is when the input signal enters the
network from the first node of the network (K = {1}). In this
case, two extreme input/output configurations are when the
input and output nodes coincide (K = {1} and T = {1}),
and when they are placed as far away as possible (K = {1}
and T = {n}). In these two extreme cases, it is possible to
establish simplified versions of the expressions in Theorem 1.

Corollary 3: (Closed-form expression ofW for K = {1}
and T = {1}) Consider the output controllability Gramian
(3) where A is as in (4), and B and C are as in (2). Further,
let xi := iπ/N , i = 1, . . . , N − 1, and N := n + 1. If
K = {1} and T = {1}, then it holds

W = − 2

N2

N−1∑
`=1

N−1∑
h=1

sin2 (x`) sin2 (xh)

γ + β (cos (x`) + cos (xh))
. (18)

Proof: Equation (18) directly follows by substituting
k = ti = tj = 1 in (7).

Corollary 4: (Closed-form expression ofW for K = {1}
and T = {n}) Consider the output controllability Gramian
(3) where A is as in (4), and B and C are as in (2). Further,



let xi := iπ/N , i = 1, . . . , N − 1, and N := n + 1. If
K = {1} and T = {n}, then it holds

W = −2α2(N−2)

N2

N−1∑
`=1

N−1∑
h=1

(−1)`+h sin2 (x`) sin2 (xh)

γ + β (cos (x`) + cos (xh))
.

(19)

Proof: By letting k = 1 and ti = tj = n, equation (7)
takes the form

W = − 2

N2

N−1∑
`=1

N−1∑
h=1

α2(n−1)

γ + β
(
cos
(
`π
N

)
+ cos

(
hπ
N

)) ·
· sin

(
`nπ

N

)
sin

(
`π

N

)
sin

(
hnπ

N

)
sin

(
hπ

N

)
, (20)

and equation (19) follows from (20) by using the identity

sin
(qnπ
N

)
= sin

(
− qπ

n+ 1
+ qπ

)
= (−1)q+1 sin

(qπ
N

)
, q ∈ Z.

III. ASYMPTOTIC ANALYSIS OFW
In this section, we study the large n asymptotic behavior

of the controllability Gramian (3) for the line network in
(4) and the two extreme scenarios discussed in Corollaries
3 and 4, that is, when the input and output nodes coincide
(K = {1} and T = {1}), and when are placed as far away
as possible (K = {1} and T = {n}).

Theorem 5: (Asymptotic behavior for K = T = {1})
Consider the output controllability Gramian (3) where A is
as in (4), and B and C are as in (2). If K = {1} and
T = {1}, then as n → ∞, W converges to a positive
constant satisfying

π2

−2γ + 4β
≤ W ≤ π2

−2γ − 4β
. (21)

Proof: Note that (18) can be equivalently written as

W = − 2

N2

N−1∑
`=0

N−1∑
h=0

sin2 (x`) sin2 (xh)

γ + β (cos (x`) + cos (xh))
, (22)

where we used the fact that the terms in the summation
corresponding to the indices ` = 0 and h = 0 vanish. In
the limit n→∞, equation (22) converges to the integral

W = −2

∫ π

−π

∫ π

−π

sin2 (x) sin2 (y)

γ + β (cos (x) + cos (y))
dx dy. (23)

Since −γ − 2β ≤ γ + β (cos (x) + cos (y)) ≤ −γ + 2β, we
can bound the integral (23) as

2I

−γ + 2β
≤ W ≤ 2I

−γ − 2β
, (24)

with I :=
∫ π
−π
∫ π
−π sin2 (x) sin2 (y) dxdy = π2/4, from

which (21) follows.
When K = T = {1}, Corollary 5 guarantees that the

Gramian is always bounded and independent of n. Further,
for very stable networks (large |γ|), the inequalities in (21)
yields the estimate W ∼ −π2/(2γ).

Theorem 6: (Asymptotic behavior for K = {1} and T =
{n}) Consider the output controllability Gramian (3) where
A is as in (4), and B and C are as in (2). If K = {1} and
T = {n}, then as n→∞ it holds

W ∼ µ√
n

(
α
(
κ−

√
κ2 − 1

))2n

. (25)

where κ := −γ/(2β) > 1 and µ > 0 is a real constant
independent of n and depending only on α, β and γ.

To prove Theorem 6, we will make use of the following
lemma, that has been adapted from [2, Sec. 4(b)].

Lemma 7: Let n > 0 and κ > 1 be real numbers. Then,
as n→∞,∫ π

−π

∫ π

−π

e−in(x+y)

2κ− cos(x)− cos(y)
dxdy

∼ ξ√
n

(
κ−

√
κ2 − 1

)2n

, (26)

where ξ := 1/(2
√
πκ(κ2 − 1)1/4).

Proof of Theorem 6: Let N := n+ 1 and define

Ψ(x, y) :=
1

β

sin2(2πx) sin2(2πy)

2κ− cos(2πx)− cos(2πy)
. (27)

In view of Corollary 4, we can write W as

W =
2α2(N−2)

N2

N−1∑
`=1

N−1∑
h=1

(−1)`+hΨ

(
`

2N
,
h

2N

)
. (28)

Notice that Ψ(x, y) = Ψ(−x, y) = Ψ(x,−y) = Ψ(−x,−y)
and Ψ(0, y) = Ψ(1/2, y) = Ψ(x, 0) = Ψ(x, 1/2) = 0.
Therefore, we can rewrite (28) as

W =
α2(N−2)

2N2

2N∑
`=1

2N∑
h=1

(−1)`+hΨ

(
`

2N
,
h

2N

)
. (29)

The latter equation follows from the fact that each term in
(28) appears four times in (29) and the additional terms
corresponding to indices `, h ∈ {N, 2N} vanish. Next, we
can express it in terms of the 2D Fourier series

Ψ(x, y) :=
∑
r,s∈Z

ψr,se
2πi(rx+sy), (30)

which converges absolutely since Ψ(x, y) is smooth, and
substitute the latter series in (29). By doing so, we obtain

W=
α2(N−2)

2N2

2N∑
`=1

2N∑
h=1

(−1)`+h
∑
r,s∈Z

ψr,se
2πi( r`

2N + sh
2N )

=
α2(N−2)

2N2

∑
r,s∈Z

ψr,s

2N∑
`=1

(−1)`e2πi r`
2N

2N∑
h=1

(−1)he2πi sh
2N

= 2α2(N−2)
∑
r,s∈Z

ψN(2r+1),N(2s+1), (31)

where in the last step we used the identity, q ∈ Z,
2N∑
h=1

(−1)he2πqi h
2N =

{
2N, if h = N mod 2N,

0, otherwise.



The Fourier coefficients in (30) read as

ψN(2r+1),N(2s+1) =

1

4π2

∫ π

−π

∫ π

−π
Ψ̄ (x, y) e−iN((2r+1)x+(2s+1)y) dxdy, (32)

where Ψ̄ (x, y) := Ψ (x/2π, y/2π). Notice that the function
Ψ̄(x, y) can be extended to a complex analytic function in
the complex strip {x, y ∈ C : |Im(x)| ≤ K, |Im(y)| ≤
K}, where K := cosh−1(κ) = ln

(
κ+
√
κ2 − 1

)
. Thus, as

a consequence of the Paley–Wiener Theorem (e.g., see [3,
§VI.7]), the Fourier coefficients in (32) decay exponentially
with a rate that satisfies, for all ε > 0,

|ψN(2r+1),N(2s+1)| ≤M(ε)e−2KN(r+s+1−ε)

≤M(ε)
(
κ+

√
κ2 − 1

)−2N(r+s+1−ε)

≤M(ε)
(
κ−

√
κ2 − 1

)2N(r+s+1−ε)

(33)

where M(ε) is a positive real constant depending only on ε
and in the last step we used the identity

(
κ+
√
κ2 − 1

)−1
=(

κ−
√
κ2 − 1

)
. We next show that the dominant (i.e.,

slowest decaying) coefficients are those corresponding to
the “simplest” terms of the series (31), namely ψN,N ,
ψ−N,N , ψN,−N , ψ−N,−N . Since the Fourier coefficients
satisfy ψr,s = ψ−r,s = ψr,−s = ψ−r,−s, the “simplest”
four coefficients of the series (31) are all equal to ψN,N . By
expanding the numerator of Ψ̄(x, y) in exponential form and
using again the Paley–Wiener Theorem, we have

ψN,N =
1

4π2

∫ π

−π

∫ π

−π
Ψ̄ (x, y) e−iN(x+y) dxdy

=
1

16π2β

∫ π

−π

∫ π

−π

e−iN(x+y)

2κ− cos(x)− cos(y)
dx dy︸ ︷︷ ︸

I(N)

+R, (34)

where, for all ε > 0, and R is a real number satisfying |R| ≤
L(ε)

(
κ−
√
κ2 − 1

)N(3−ε)
with L(ε) being a positive real

constant depending only on ε. Finally, by virtue of Lemma
7, the integral I(N) features the large N asymptotic estimate

I(N) ∼ ξ√
N

(
κ−

√
κ2 − 1

)2N

, (35)

where ξ := 1/(2
√
πκ(κ2 − 1)1/4). Thus, from the latter

estimate and the bounds in (33) and (34), it follows that,

for large N , (31) has the asymptotics

W ∼ 2α2(N−2)(4ψN,N )

∼ 8α2(N−2)I(N)

∼ ξα2(N−2)

2π2β
√
N

(
κ−

√
κ2 − 1

)2N

. (36)

After some rearranging, the above expression yields the large
n asymptotics (25).

As a consequence of Theorem 6, we have the following
immediate result that characterizes the values of the param-
eters α, β, γ for which W either converges to zero or grows
unbounded as the network dimension n increases.

Corollary 8: (Asymptotic transition for K = {1} and
T = {n}) Consider the output controllability Gramian (3)
where A is as in (4), and B and C are as in (2). If K = {1}
and T = {n}, then

lim
n→∞

W =

{
∞ if ω(A) > 0,

0 if ω(A) ≤ 0
(37)

where ω(A) = λmax((A+A>)/2).
Proof: From Theorem 6, we have

lim
n→∞

W =

{
∞ if α > κ+

√
κ2 − 1,

0 if 0 < α ≤ κ+
√
κ2 − 1.

(38)

where we used the identity
(
κ+
√
κ2 − 1

)−1
=(

κ−
√
κ2 − 1

)
. As n→∞, it holds

ω(A) = γ + βα+ β/α

=
β

α

(
α2 − 2κα+ 1

)
. (39)

Thus, if ω(A) > 0 then α2 − 2κα + 1 > 0 which in turn
yields α > κ+

√
κ2 − 1. Conversely, if ω(A) ≤ 0 then α2−

2κα+1 ≤ 0 which in turn yields α ≤ κ+
√
κ2 − 1. Equation

(37) now follows from the latter observations and (38).
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