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Standard notation

j Imaginary unit
Z Set of integers
R Set of real numbers
C Set of complex numbers

Im(a) Imaginary part of a ∈ C
Re(a) Real part of a ∈ C
a∗ Complex conjugate of a ∈ C
L{·} Laplace transform
Z{·} z-transform
δ[k] Kronecker’s delta, for k ∈ Z, δ[k] = 1, if

k = 0 δ[k] = 1, otherwise
δ−1[k] (Discrete time) step function, for k ∈ Z,

δ−1[k] = 1, if k ≥ 0, δ−1[k] = 0 otherwise
δ−1(t) Step function, for t ∈ R, δ−1(t) = 1 if

t ≥ 0, δ−1(k) = 0 otherwise

Symbol legend

Z Important fact
b Computations needed
� Use data book
B Pay attention
� Clarification



Question 1. Find from first principles the z-transforms of the sequences obtained by
sampling, (with uniform sampling period T ), the continuous-time waveforms whose
Laplace transforms are:

(i)
1

s
, (ii)

1

s+ a
, (iii)

1

(s+ a)(s+ b)
, (iv)

s+ a

(s+ a)2 + b2
.

Note that the first sample is taken at t = 0+.

For each point there are essentially three steps to follow:

(i) First step: Inverse L-transform

f(t) := L−1
{

1

s

}
= 1, t ≥ 0.

Second step: Sampling of period T

f(kT ) = 1, k ≥ 0.

Third step: z-transform B You can
omit the com-
putation of the
Region of Con-
vergence of the
z-transform,
but bear in
mind that the
z-transform is
not generally
defined for all
z ∈ C!

B You can
omit the com-
putation of the
Region of Con-
vergence of the
z-transform,
but bear in
mind that the
z-transform is
not generally
defined for all
z ∈ C!

Z{f(kT )} =
∞∑
k=0

f(kT )z−k

=
∞∑
k=0

z−k

=
1

1− z−1
, |z| > 1.

(ii) First step: Inverse L-transform

f(t) := L−1
{

1

s+ a

}
= e−at, t ≥ 0.

Second step: Sampling of period T

f(kT ) = e−akT , k ≥ 0.

Third step: z-transform

Z{f(kT )} =
∞∑
k=0

f(kT )z−k

=
∞∑
k=0

e−akT z−k

=
∞∑
k=0

(e−aT z−1)k

=
1

1− e−aT z−1
, |z| > e−aT .
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(iii) First step: Inverse L-transform b You can use
either the par-
tial fraction ex-
pansion or the
residue method
(or both for
double check-
ing!)

b You can use
either the par-
tial fraction ex-
pansion or the
residue method
(or both for
double check-
ing!)

f(t) := L−1
{

1

(s+ a)(s+ b)

}
= L−1

{
1

b− a

(
1

s+ a
− 1

s+ b

)}
=

1

b− a

(
e−at − e−bt

)
, t ≥ 0.

Second step: Sampling of period T

f(kT ) =
1

b− a

(
e−akT − e−bkT

)
, k ≥ 0.

Third step: z-transform

Z{f(kT )} =
∞∑
k=0

f(kT )z−k

=
∞∑
k=0

1

b− a

(
e−akT − e−bkT

)
z−k

=
1

b− a

∞∑
k=0

(
e−aT z−1

)k − 1

b− a

∞∑
k=0

(e−bT z−1)k

=
1

b− a

(
1

1− e−aT z−1
− 1

1− e−bT z−1

)
=

z−1(e−aT − e−bT )

(b− a)(1− e−aT z−1)(1− e−bT z−1)
, |z| > max{e−aT , e−bT }.

(iv) First step: Inverse L-transform � You can use
the Electrical
and Informa-
tion Data Book
to save time!

� You can use
the Electrical
and Informa-
tion Data Book
to save time!f(t) := L−1

{
s+ a

(s+ a)2 + b2

}
= e−at cos(bt)

=
1

2
e(−a+jb)t +

1

2
e(−a−jb)t, t ≥ 0.

Second step: Sampling of period T

f(kT ) =
1

2
e(−a+jb)kT +

1

2
e(−a−jb)kT , k ≥ 0.

Third step: z-transform

Z[f(kT )] =

∞∑
k=0

f(kT )z−k

=
1

2

∞∑
k=0

(
e(−a+jb)T z−1

)k
+

1

2

∞∑
k=0

(
e(−a−jb)T z−1

)k
=

1

2

(
1

1− e(−a+jb)kT z−1
+

1

1− e(−a−jb)kT z−1

)
=

1− e−aT cos(bT )z−1

1− 2e−aT cos(bT )z−1 − e−2aT z−1
, |z| > e−aT .

♦
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Question 2. A sequence is given by uk = 1 for k = 0, 1 and zero otherwise. Find the
z-transform of this sequence and hence solve the following difference equations for yk,
using the z-transform technique.

(i) yk = uk + uk−1 + uk−2, (FIR filter).

(ii) yk = 0.8yk−1 + 0.2uk, y−1 = 0, (Exponential Smoother).

(iii) yk = 0.98yk−1 − 0.9604yk−2 + uk, y−1 = 0, y−2 = 1, (IIR filter).

Since uk = 0 for k 6= 0, 1, by applying the definition of z-transform we get

U(z) := Z{uk} =

∞∑
k=0

ukz
−k = 1 + z−1.

(i) By taking the z-transform of both sides B Recall the
linearity and
time-delay
properties of
z-transform!

B Recall the
linearity and
time-delay
properties of
z-transform!

Y (z) := Z{yk} = Z{uk}+ Z{uk−1}+ Z{uk−2}
= U(z) +��u−1 + z−1U(z) +��u−2 +��u−1z−1 + z−2U(z)

= 1 + z−1 + z−1 + z−2 + z−2 + z−3

= 1 + 2z−1 + 2z−2 + z−3.

Hence, we obtain

yk = δ[k] + 2δ[k − 1] + 2δ[k − 2] + δ[k − 3].

or equivalently, in terms of sequence, {yk}∞k=0 = {1, 2, 2, 1, 0, . . . }.

(ii) As before, we take the z-transform of both sides

Y (z) = 0.8(z−1Y (z) +��y−1) + 0.2U(z),

= 0.8z−1Y (z) + 0.2(1 + z−1)

and, by rearranging the latter equation, we arrive at

Y (z) = 0.2 +
0.36z−1

1− 0.8z−1
.

Hence,
yk = 0.2δ[k] + 0.36(0.8)k−1δ−1[k − 1],

so that {yk}∞k=0 = {0.2, 0.36, 0.36 · 0.8, 0.36(0.8)2, . . . , 0.36(0.8)k, . . . }.

(iii) The z-transform of both sides gives

Y (z) = 0.98(z−1Y (z)−��y−1)− 0.9604(z−2Y (z)− z−1��y−1 − y−2) + U(z)

= 0.98z−1Y (z)− 0.9604(z−2Y (z)− 1) + 1 + z−1

and a rearrangement of the terms yields

Y (z) =
0.0396 + z−1

1− 0.98z−1 + 0.9604z−2
.

Now notice that the denominator of Y (z) can be written as

1− 0.98z−1 + 0.9604z−2 = 1− 2 · 0.98 cos(π/3)z−1 + 0.982z−2.
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� Given an expression of the form

Y (z) =
a+ bz−1

c+ dz−1 + ez−2

with a, b, c, d, e ∈ R \ {0}. We can always rewrite it as

Y (z) =
a

c
·

1 + b
az
−1

1 + d
c z
−1 + e

cz
−2 .

If the polynomial c+ dz−1 + ez−2 has complex-conjugate roots then

∆ =
d2

c2
− 4

e

c
< 0,

which implies that e and c must have the same sign and
∣∣∣ d
2
√
ec

∣∣∣ < 1. Now, set

r :=

√
e

c
, ω0 := arccos

(
− d

2
√
ec

)
.

Then we can rewrite the initial expression as

Y (z) =
a

c
·

1 + b
az
−1

1− 2r cos(ω0)z−1 + r2z−2
.

Hence we obtain � Use the
Electrical and
Information
Data Book!

� Use the
Electrical and
Information
Data Book!

yk =
(0.98)k−1

sin(π/3)
(0.98 · 0.0396 sin((k + 1)π/3) + sin(kπ/3)) δ−1[k]

= (0.98)k−1 (0.0448 sin((k + 1)π/3) + 1.1547 sin(kπ/3)) δ−1[k].

and we are done. b As a fi-
nal check it is
worth to com-
pare the value
of y0 (and y1,
y2,...) with the
one obtained
from the differ-
ence equation.

b As a fi-
nal check it is
worth to com-
pare the value
of y0 (and y1,
y2,...) with the
one obtained
from the differ-
ence equation.

♦

Question 3. For the three difference equations of question 2, write down the z-plane
transfer function relating {yk} to {uk}.

(a) Evaluate their poles and zeros, and calculate and sketch the response to a unit
step on uk. (Assume yk = 0, k < 0).

(b) Assuming the time between samples is T , calculate and sketch the steady state
response to uk = cosωkT for ωT = 0, π/3, π.

The z-plane transfer function relating {yk} to {uk} is given by G(z) = Y (z)/U(z), the
zeros are given by the roots of the numerator G(z) and the poles by the roots of the
denominator of G(z). Hence, with reference to Question 2, we have (see also the zero-pole
plots below)

(i) G1(z) = 1+z−1+z−2 = z2+z+1
z2

, with zeros
{
−1

2 + j
√
3
2 ,−

1
2 − j

√
3
2

}
and poles {0, 0}.

(ii) G2(z) = 0.2
1−0.8z−1 = 0.2z

z−0.8 , with one zero at 0 and one pole at 0.8.
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(iii) G3(z) = 1
1−0.98z−1+0.9604z−2 = z2

z20.98z+0.9604
, having zeros {0, 0} and poles

{0.98e+jπ/3, 0.98e−jπ/3}.

Re(z)

Im(z)

××

◦

◦

(i)

Re(z)

Im(z)

×◦

(ii)

Re(z)

Im(z)

◦◦

×

×

(iii)

(a) Recall that the z-transform of the discrete unit step is given by U(z) = 1
1−z−1 . Hence

the step responses for the three cases are:

(i)

Y1(z) = G1(z)U(z)

= (1 + z−1 + z−2)
1

1− z−1

= 1− z−1 +
3z−1

1− z−1
,

so that

y1(k) = δ[k]− δ[k − 1] + 3δ−1[k − 1],

or in terms of sequence {y1(k)}∞k=0 = {1, 2, 3, 3, 3, 3, . . . }. Z Note that
the steady
value is at-
tained after a
finite number
of steps (in this
case 2). This
phenomenon is
a unique fea-
ture of discrete-
time systems!

Z Note that
the steady
value is at-
tained after a
finite number
of steps (in this
case 2). This
phenomenon is
a unique fea-
ture of discrete-
time systems!

(ii)

Y2(z) = G2(z)U(z)

=
1

1− z−1
· 0.2

1− 0.8z−1

=
1

1− z−1
− 0.8

1− 0.8z−1

and transforming back in the time-domain

y2(k) = δ−1[k]− (0.8)k+1δ−1[k].

(iii)

Y3(z) = G3(z)U(z)

=
1

1− 0.98z−1 + 0.9604z−2
· 1

1− z−1

= 0.012 · 1 + 80z−1

1− 2 · 0.98 cos(π/3)z−1 + 0.982z−2
+

1.02

1− z−1
+ 1

and therefore � Use the
Electrical and
Information
Data Book!

� Use the
Electrical and
Information
Data Book!6



y3(k) = (0.98)k−1 (0.0136 sin((k + 1)π/3)− 0.0111 sin(kπ/3)) δ−1[k]

+ 1.02δ−1[k − 1] + δ[k].

The figure below shows the step responses of the three systems.
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(b) The steady state response to an input uk = cos(ωkT ) is given by

yk = |G(ejωT )| cos(ωkT + ∠G(ejωT )).

Hence with reference to the previous three cases we have: Z Observe
that ω = π/T
corresponds to
the maximum
frequency for
a discrete-time
system!

Z Observe
that ω = π/T
corresponds to
the maximum
frequency for
a discrete-time
system!

(i)

y1(k) =


|G(1)| cos(∠G(1)) = 3, ωT = 0,

|G(ejπ/3)| cos
(
π
3k + ∠G(ej

π
3 )
)

= 2 cos
(
(k − 1)π3

)
, ωT = π

3 ,

|G(−1)| cos(πk + ∠G(−1)) = (−1)k, ωT = π.

(ii)

y2(k) =


|G(1)| cos(∠G(1)) = 1, ωT = 0,

|G(ejπ/3)| cos
(
π
3k + ∠G(ej

π
3 )
)

= 0.218 cos
(
k π3 − 0.857

)
, ωT = π

3 ,

|G(−1)| cos(πk + ∠G(−1)) = (−1)k/9, ωT = π.

(iii) Z Notice that
ω = π/(3T )
corresponds to
the resonant
frequency of
the system!

Z Notice that
ω = π/(3T )
corresponds to
the resonant
frequency of
the system!

y3(k) =


|G(1)| cos(∠G(1)) = 1.02, ωT = 0,

|G(ejπ/3)| cos
(
π
3k + ∠G(ej

π
3 )
)

= 29.16 cos
(
k π3 − 0.518

)
, ωT = π

3 ,

|G(−1)| cos(πk + ∠G(−1)) = 0.34 · (−1)k, ωT = π.

The figure below shows the steady state responses of the three systems for ωT =
0, π/3, π.

� Since
ejωT = ejωT+2πk, ∀k ∈ Z,

G(ejωT ) is a periodic function of ω of period T/2π. Hence we can study the frequency
behaviour (magnitude and phase) of G(z) in the frequency interval [−π/T, π/T ].
Furthermore, it holds G(ejωT ) = G∗(e−jωT ), so that:
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1. the magnitude of G is an even function of the frequency, i.e.

|G(ejωT )| = |G(e−jωT )|,

2. the phase of G is an odd function of the phase, i.e.

∠G(ejωT ) = −∠G(e−jωT ).

Hence, due to these symmetries, the study of the frequency behaviour of G(z) can be
restricted to the frequency interval [0, π/T ], which implies that π/T corresponds to
the maximum frequency for a discrete-time system.

♦

Question 4. (Supply and demand cycles). In agriculture a one season prediction of
price is required by the farmer to determine how much product to produce. The price
at harvesting will then depend on the supply via the demand curve. Assume that the
demand at time k is given by

dk = de − apk
where pk is the price at time k. Now assume that the supply is given by

sk = se + bp̂k,

where p̂k is the predicted price at time k. (de and se are constants). The price then
adjusts to equate supply and demand at time k (i.e. sk = dk). Let c = b/a and
determine conditions on c for the stability of this system (i.e. the stability of the
difference equation determining pk), for

8



(i) p̂k = pk−1, and

(ii) p̂k = 2pk−1 − pk−2 (i.e. a linear extrapolation through the last two prices).

In the following we assume that a, b ∈ R are positive constants.

(i) In this case the supply takes the form

sk = se + bpk−1,

hence, by equating supply and demand, we get

de − apk = se + bpk−1 =⇒ pk −
b

a
pk−1 =

d0 − s0
a

.

The latter difference equation is stable if the “characteristic polynomial” p(z) := z −
b/a has roots (strictly) inside the unit circle. Thus the system is stable if c := b/a < 1. Z Here we

use the term
stable to mean
that the re-
sponse of a
dynamic sys-
tem to any
finite initial
conditions is
bounded.

Z Here we
use the term
stable to mean
that the re-
sponse of a
dynamic sys-
tem to any
finite initial
conditions is
bounded.

� The solution of a difference equation

n∑
i=0

aiy(k − i) =

m∑
j=0

bju(k − j), y(−n) = y−n, . . . , y(−1) = y−1

can always be decoupled as

y(k) = y`(k) + yf (k),

where y` is the “free evolution” of the system, i.e. the evolution of the system
without any inputs which depending only on the initial conditions, and yf is
the “forced evolution” of the system, i.e. the evolution of the system due to the
selected input {uk}. In particular, the free evolution has the form

y`(k) = c1(z1)
k + c2(z2)

k + · · ·+ cn(zn)k,

where z1, . . . , zn are the roots of the characteristic polynomial

p(z) =
n∑
i=0

aiz
n−i

and c1, . . . , cn ∈ C are constant coefficients depending on the initial conditions.

(ii) In this case the supply takes the form

sk = se + b(2pk−1 − pk−2).

Equating supply and demand gives

de − apk = se + se + b(2pk−1 − pk−2) =⇒ pk + 2cpk−1 − cpk−2 =
d0 − s0
a

.

In this case the characteristic polynomial is p(z) := z2 + 2cz − c. The roots of p(z)
are given by z1,2 = −c±

√
c2 + c. Notice that, since for c = 0 the two roots collapse

at the point z = 0, the system is stable for c sufficiently small. As c increases, the
negative root first crosses the unit circle at z = −1. Hence, solving for c the equation
−c−

√
c2 + c = −1 gives c = 1/3. We conclude that the system is stable if c < 1/3. Z Observe

that this price
extrapolation
tends to desta-
bilise the sys-
tem!

Z Observe
that this price
extrapolation
tends to desta-
bilise the sys-
tem!

♦
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Question 5. (Numerical solutions of differential equations).

(a) Euler’s method for solving the differential equation

dx

dt
= f(x(t)) (1)

is to make the approximation,

x((k + 1)T ) ≈ x(kT ) + Tf(x(kT )) (2)

for k = 0, 1, 2, . . . , where T is the step length. Assuming f(x) = ax for a < 0,
what range of values of T in (2) will ensure that x(kT )→ 0 as k →∞?

(b) Euler’s method is inaccurate unless T is very small and an alternative is to consider
higher-order extrapolation based on x(kT ) and x((k−1)T ) and ẋ(kT ) = f(x(kT )).
The function

g(t) = (c− b+mT )
t2

T 2
+mt+ b

is the quadratic function that satisfies

g(0) = b, ġ(0) = m, g(−T ) = c.

Now if we let
b = x(kT ), m = f(x(kT )), c = x((k − 1)T )

then x((k + 1)T ) = g(T ) = x((k − 1)T ) + 2Tf(x(kT )) is an extrapolation of the
next value of x based on this quadratic approximation. If f(x) = ax with a < 0
show that the method would be unstable for any T > 0 (!). What would be the
nature of the instability?

(a) Assuming f(x) = ax the difference equation becomes

x((k + 1)T ) = x(kT ) + Tax(kT ) = (1 + aT )x(kT )

⇒ x((k + 1)T )− (1 + aT )x(kT ) = 0.

The characteristic polynomial of the difference equation is p(z) := z − 1 − aT . To
ensure stability the roots of p(z) must be (strictly) inside the unit circle. From this
fact, we obtain the condition |1 + aT | < 1 which in turn implies the system is stable if

0 < T < −2

a
, a < 0.

(b) For f(x) = ax, the modified equation takes the form

x((k + 1)T ) = g(T ) = 2Tax(kT ) + x((k − 1)T )

⇒ x((k + 1)T )− 2Tax(kT )− x((k − 1)T ) = 0.

In this case, the roots of the characteristic polynomial p(z) := z2 − 2Tz − 1 are given
by z1,2 = aT ±

√
1 + a2T 2 and for all aT < 0 the root z2 is always less than −1. Hence

the system is always unstable for a < 0. We conclude that this type of extrapolation
destabilises the system, since the approximation error grows exponentially as (z2)

k.

♦

10



Question 6. A discrete time system has impulse response {gk} and transfer function
G(z).

(a) Show that
∑∞

k=0 |gk| is finite if all the poles of G(z) lie strictly inside the unit
circle.

(b) Suppose
∑∞

k=0 |gk| is infinite. Explain how the output can be made arbitrarily
large at some time instant, using an input of plus and minus ones.

(c) Let G(z) = 1/(z2 −
√

2z + 1). Find a bounded input which gives an unbounded
output.

(a) G(z) can be written in the factorised form B G(z) is sup-
posed to be
a general ra-
tional func-
tion, either im-
proper (m > n)
or proper
(m ≤ n).

B G(z) is sup-
posed to be
a general ra-
tional func-
tion, either im-
proper (m > n)
or proper
(m ≤ n).

G(z) =
b0 + b1z

−1 + · · ·+ bmz
−m

(1− p1z−1)n1(1− p2z−1)n2 · · · (1− prz−1)nr
,

where pi, i = 1, . . . , r are the stable poles of G(z), i.e. |pi| < 1 for all i = 1, . . . , r.
Furthermore, G(z) can be split into partial fractions of the form

G(z) =

r∑
i=1

nr∑
`=1

αi`
(1− piz−1)`

+

m−n∑
i=0

βiz
i,

with n := n1 + n2 + · · ·+ nr. Now since

Z−1
{

1

(1− piz−1)`

}
=

(k + `+ 1)! pki
k!(`− 1)!

δ−1[k], Z−1{zi} = δ[k + i],

and the series ∞∑
k=0

(k + `+ 1)! pki
k!(`− 1)!

|pi|k =
1

(1− |pi|)`
<∞

converges to a finite value due to the fact that |pi| < 1 for all i = 1, . . . , r, then we
have ∞∑

k=0

|gk| ≤
r∑
i=1

ni∑
`=1

|αi`|
(1− |pi|)`

+ |β0| <∞.

(b) Since
∑∞

k=0 |gk| is infinite then, for all M > 0 there exists N > 0 such that

N∑
k=0

|gk| > M

Now the output at time N of the system described by the pulse response {gi}∞i=0 is
given by the convolution sum

yN =
N∑
k=0

gkuN−k.

Therefore, if we set uN−k := sign(gk), k = 0, 1, . . . , N we have

yN =

N∑
k=0

|gk| > M.
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(c) We observe that G(z) has two complex conjugate poles on the unit circle, precisely
p1,2 := e±jπ/4. Now we choose a bounded input which in the z-transform domain has
a pair of poles at the same locations p1,2, e.g. Z The lo-

cation of the
poles identifies
the resonant
frequency of
the system!

Z The lo-
cation of the
poles identifies
the resonant
frequency of
the system!

uk = sin(kπ/4)δ−1[k].

In the z-domain, we have

G(z)U(z) =
z−3√

2(1− e+jπ/4z−1)2(1− e−jπ/4z−1)2

and, using the partial fractions decomposition, we arrive at

Y (z) = G(z)U(z) =

2∑
`=1

α1,`

(1− e+jπ/4z−1)`
+

2∑
`=1

α∗1,`
(1− e−jπ/4z−1)`

.

Eventually, by recalling the inverse formula

Z−1
{

1

(1− piz−1)`

}
=

(k + `+ 1)! pki
k!(`− 1)!

δ−1[k],

we conclude that the output yk will include terms of the form (k+`+1)! e±jkπ/4

k!(`−1)! δ−1[k]
which real parts are unbounded in k.

♦

Question 7. For a sampling period of 1 sec the Bode plots of the following transfer
functions were plotted (see figure below). As usual, however, it was forgotten to label
the graphs. Can you help?

(1)
z + 2

z − 1
, (2)

2z + 1

z − 1
, (3)

1

z2 − 0.5z + 0.9
,

(4)
1

z(z2 − 0.5z + 0.9)
, (5)

(z + 1)2

4(z + 3)(z + 0.5)
, (6)

3z + 1

4z + 2
.

1 · 10�2 0.1 1
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1 · 10�3
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0.1

1

10

100
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A trivial way to figure out the correct matchings is to compute the magnitude and phase
of the various transfer functions at some (meaningful) frequencies (e.g. around 1 rad/s).
Nevertheless, we can arrive at the same conclusions using a smarter and quicker way, as
described below.

First, notice that (1) and (2) have both infinite gain at frequency 0 (z = ej0 = 1). Since
there is only one gain plot that exhibits such characteristic, it follows that they must have
the same gain at all frequency (indeed it holds |ejθ + 2| = |2ejθ + 1|). Moreover the phase
plots of (1) and (2) start at −90◦ (since they both have one pole at z = 1). At the max-
imum frequency π the phase of (1) is −180◦ (the zero outside the unit circle gives no net
change of phase from 0 rad/s to π rad/s), while the phase of (1) is 0◦ (due to the zero
inside the unit circle that adds a phase of +π/2 rad).

Re(z)

Im(z)

• e
jθ1

◦
Re(z)

Im(z)

•ejθ2

◦

Re(z)

Im(z)

• e
jθ1

◦
Re(z)

Im(z)

•ejθ2

◦

Transfer functions (3) and (4) have the same magnitudes since they differ only by the factor
z (indeed |z| = 1 for ejθ). Both have poles at z = rejθ with r2 = 0.9, and so r = 0.95
is very close to the unit circle. Hence the gain will have a peak near frequency φ. Both
phases decrease quickly near to the resonant frequency φ (indeed the vector ejθ − ejφ flips
by nearly of 180◦). Finally the factor z in the denominator of (4) gives an extra phase of
−180◦ at θ = π.

13



Re(z)

Im(z)

•• Re(z)

Im(z)

•
•

The quotient of (5) and (6) evaluated at z = ejθ is positive real, indeed

(ejθ + 1)2

(ejθ + 3)(3ejθ + 1)
=

cos θ + 1

3 cos θ + 5
.

Hence the phase plots of (5) and (6) must coincide, and so it can be easily identified.
Moreover G5(−1) = 0 so the gain of (5) rolls down to −∞ on the log scale at high
frequencies. This allows to identify the gain plots of (5) and (6). Z You can

use the Mat-
lab command
dbode or ltiview
to check your
results!

Z You can
use the Mat-
lab command
dbode or ltiview
to check your
results!
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(1)

(2)
(3)

(4)

(5)

(6)

♦

Question 8. Find the forward difference, backward difference and Tustin transforma-
tion of the analog low-pass filter

G(s) =
a

s+ a

(a > 0) assuming a sampling period of T seconds. What conditions must aT satisfy
for these digital filters to be stable? For what range of values of aT would these filters
be reasonable approximations of G(s)?
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(i) In the forward difference method we have s = z−1
T , hence

G(z) =
a

z−1
T + a

=
aT

z − 1 + aT
.

To ensure stability it must be |1− aT | < 1, so that 0 < aT < 2.

(ii) In the backward difference method we have s = z−1
zT , hence

G(z) =
a

z−1
zT + a

=
aTz

(1 + aT )z − 1
.

The filter is stable for all aT .

(iii) The Tustin transformation is defined as s = 2
T
z−1
z+1 , hence

G(z) =
a

2
T
z−1
z+1 + a

=
aT (z + 1)

z(2 + aT ) + aT − 2
.

The filter has a pole at z = 2−aT
2+aT and so the filter is stable for all aT . Z Note that

the backward
difference and
Tustin trans-
formation give
stable filters
while the for-
ward difference
method can
return an un-
stable filter.

Z Note that
the backward
difference and
Tustin trans-
formation give
stable filters
while the for-
ward difference
method can
return an un-
stable filter.

Finally we observe that the digital filters make good sense approximations of the
analog low-pass filter if the sampling frequency 1/T Hz is at least 2 times greater
than the 3dB cutoff frequency of the filter, which for a low-pass filter is given by
fc := a/2π Hz. This is a consequence of the Nyquist-Shannon sampling theorem

b The 3dB
cutoff fre-
quency of a
filter G(s)
is computed
by equating
|G(jω)| = 1√

2
.

b The 3dB
cutoff fre-
quency of a
filter G(s)
is computed
by equating
|G(jω)| = 1√

2
.

which states that for a band-limited signal of band B the sample period for its
perfect reconstruction must satisfy 1/T ≥ 2B. Hence, since the band of the filter can
be considered approximately equal to fc, we conclude that if

1

T
� 2fc ⇒ aT � π,

then the digital filters can be considered good approximations of the analog one.

♦

Question 9. A motor driving a rotating inertia has transfer function 1/s(s+ 1) from
the motor current input to the position output. The output is sampled with period
T , and the current input is held constant between sampling points. Show that the
equivalent discrete-time system, from the sequence of current inputs to the sampled
outputs, has the z-plane transfer function

G(z) =

(
e−T − 1 + T

)
z−1 +

(
1− (1 + T )e−T

)
z−2

(1− z−1) (1− e−T z−1)
.

The equivalent discrete-time model can be evaluated using the step response equivalence:

Y (z) = Z
{
L−1

{
1

s2(s+ 1)

} ∣∣∣∣
t=kT

}
= Z

{
L−1

{
1

s
− 1

s
+

1

s+ 1

} ∣∣∣∣
t=kT

}
= Z

{
(t− 1 + e−t)

∣∣∣∣
t=kT

}
= Z

{
kT − 1 + e−kT

}
=

Tz−1

(1− z−1)2
− 1

(1− z−1)
+

1

(1− e−T z−1)
.
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Therefore the transfer function of the equivalent discrete-time system is given by

G(z) = (1− z−1)Y (z)

=
Tz−1

(1− z−1)
− 1 +

1− z−1

(1− e−T z−1)

=

(
e−T − 1 + T

)
z−1 +

(
1− (1 + T )e−T

)
z−2

(1− z−1) (1− e−T z−1)
.

� Consider the following block diagram

DAC

zero-order hold

G(s) ADC
u(kT ) u(t) y(t) y(kT )

First consider the zero-order hold (for short ZOH). This takes the discrete value u(kT )
at sample time kT and produces a rectangular pulse of height u(kT ) and width T .
For each sample u(kT ), the output of the ZOH is therefore a step of height u(kT ) at
time kT plus a step of height −u(kT ) at time (k + 1)T , so the continuous signal at
the output of the ZOH has the Laplace transform:

L{u(kT )δ−1(t− kT )− u(kT )δ−1(t− (k + 1)T )} = e−kTs
u(kT )

s
− e−(k+1)Tsu(kT )

s

= u(kT )
1− e−Ts

s
e−kTs.

So the continuous part of the system is driven by a signal with Laplace transform:

U(s) := L{u(t)} =
∞∑
k=0

u(kT )
1− e−Ts

s
e−kTs.

We can therefore derive the discrete-time transfer function G(z) (equivalent at the
sample times to the continuous function G(s) driven by a ZOH) by working out the
impulse response of (1 − eTs)G(s)/s in continuous-time, then sampling it, and then
finding its z-transform, i.e.:

G(z) = Z
{
L−1

{
1− e−Ts

s
G(s)

} ∣∣∣∣
t=kT

}
.

However e−Ts represents a delay of T , which is equivalent to z−1 in the z-transform
domain. Therefore we can simplify this to:

G(z) = (1− z−1)Z
{
L−1

{
G(s)

s

} ∣∣∣∣
t=kT

}
.

♦

Question 10. Consider a continuous time system with transfer function G(s) con-
nected as shown in the figure below. The output of the first-order hold DAC is the
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linear extrapolation through the last two discrete inputs. Explain why the discrete
system taking {u(kT )} to {y(kT )} has a z-transfer function. Show that the transfer
function is given by the expression:

H(z) =
(z − 1)2

Tz2
Z
{
L−1

{
G(s)

Ts+ 1

s2

} ∣∣∣∣
t=kT

}

DAC

first-order hold

G(s) ADC
u(kT ) u(t) y(t) y(kT )

It is easy to check that the system satisfies linearity (indeed a linear scaling of an input
produces the same effect on the output and adding two inputs adds the outputs) and time-
invariance (shifiting the input by one time period T does the same to the ouptut). Hence,
the system admits a z-transfer function. To compute the latter we can use an input u(t) Z The choice

of the input
can be inferred
from the factor
(z − 1)2/Tz2

in the expres-
sion of H(z)!

Z The choice
of the input
can be inferred
from the factor
(z − 1)2/Tz2

in the expres-
sion of H(z)!

composed by the sum of an step function of amplitude T and a ramp:

u(t) = T + t.

The Laplace transform of u(t) is given by

U(s) := L{u(t)} =
T

s
+

1

s2
=
Ts+ 1

s2
.

Hence the discrete-time output has the form

y(kT ) = L−1
{
G(s)

Ts+ 1

s2

} ∣∣∣∣
t=kT

,

and its z-transform is

Y (z) := Z{y(kT )} = Z
{
L−1

{
G(s)

Ts+ 1

s2

} ∣∣∣∣
t=kT

}
.

Since u(kT ) = T + kT , we have

U(z) := Z{u(kT )} =
T

1− z−1
+

Tz−1

(1− z−1)2
=

Tz2

(z − 1)2
.

Finally the transfer function of the overall system is given by

H(z) :=
Y (z)

U(z)
=

(z − 1)2

Tz2
Z
{
L−1

{
G(s)

Ts+ 1

s2

} ∣∣∣∣
t=kT

}
.

A more rigorous explanation of the fact that H(z) is the transfer function of the discretised
system is given below.
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� Consider the following block diagram

DAC

first-order hold

G(s) ADC
u(kT ) u(t) y(t) y(kT )

First consider the first-order hold (for short FOH). In the time domain, the output
of the FOH can be written as

u(t) =
∞∑
k=0

u(kT )δ−1(t− kT )− 2u(kT )δ−1(t− (k + 1)T )

+ u((k − 1)T )δ−1(t− (k + 1)T ) +
1

T
δ1(t− kT )(u(kT )− u((k − 1)T ))

− 1

T
δ1(t− (k + 1)T )(u(kT )− u((k − 1)T )),

where δ1(t) denotes the ramp function (i.e. given t ∈ R, δ1(t) = t if t ≥ 0 and
δ1(t) = 0 otherwise). By taking the Laplace transform of the previous expression
U(s) := L{u(t)}, after some rearrangements, we obtain

U(s) =
∞∑
k=0

u(kT )
1− 2e−Ts + e−2Ts

s
e−kTs + u(kT )

1− 2e−Ts + e−2Ts

Ts2
e−kTs

=
∞∑
k=0

u(kT )
(Ts+ 1)

s2
(1− e−Ts)2

T
e−kTs =:

(Ts+ 1)

s2
(1− e−Ts)2

T
U∗(esT ),

where

U∗(esT ) :=

∞∑
k=0

u(kT )e−kTs,

is the discrete transform of the original input {u(kT )} (to recover the z-transform
just put z = esT ). We can now derive the discrete-time transfer function H(z) as
follows

H(z) = Z
{
L−1

{
(Ts+ 1)

s2
(1− e−Ts)2

T

} ∣∣∣∣
t=kT

}
.

Eventually, since e−Ts represents a delay of T , which is equivalent to z−1 in the
z-transform domain, we get

H(z) =
(z2 − 1)2

Tz2
Z
{
L−1

{
G(s)

Ts+ 1

s2

} ∣∣∣∣
t=kT

}
.

♦

Question 11. An economic indicator is measured once every quarter and it is desired
to estimate the underlying trend in the face of seasonal fluctuations. Assume that the
indicator at the kth quarter, vk, is related to the underlying trend, uk, by

vk = uk + wk, k ≥ 0,

18



where uk = a+ bk, and the seasonal variation, wk, is a periodic function with period
4 and zero mean value, (i.e. w4k+i = wi and w0 + w1 + w2 + w3 = 0).

(a) Show that

W (z) = Z{wk} =
w0 + w1z

−1 + w2z
−2 + w3z

−3

1− z4
(3)

=
w0 + (w0 + w1)z

−1 − w3z
−2

(1 + z−1)(1 + z−2)
(4)

(b) The underlying trend is estimated by passing {vk} through a FIR filter giving

yk =
1

8
(vk + 2vk−1 + 2vk−2 + 2vk−3 + vk−4)

with error given by
ek = yk − uk−2.

(i.e. yk is supposed to be an estimate of uk−2).

(i) Find the transfer function, G(z), of this filter, and its zeros, and show that
the poles of W (z) are cancelled by zeros of G(z).

(ii) Show that (G(z) − z−2) = 1
8(1 − z−1)2(1 + 4z−1 + z−2), and hence that its

zeros cancel the poles of U(z).

(iii) Hence show that the error, ek, will be zero for k ≥ 4, and hence this filter
accurately extracts the trend under these assumptions.

(iv) Show that
G(ejθ) = cos θ cos2(θ/2)e−j2θ

and sketch the Bode diagram. Comment on the frequencies s.t. G(ejθ) = 0.

(a) The signal wk is periodic of period 4, hence

W (z) = (w0 + w1z
−1 + w2z

−2 + w3z
−3)

+ z−4(w0 + w1z
−1 + w2z

−2 + w3z
−3)

...

+ z−4k(w0 + w1z
−1 + w2z

−2 + w3z
−3)

...

= (1 + z−4 + z−8 + · · · )(w0 + w1z
−1 + w2z

−2 + w3z
−3)

=
1

1− z−4
(w0 + w1z

−1 + w2z
−2 + w3z

−3)

=
w0 + w1z

−1 + w2z
−2 + w3z

−3

(1− z−1)(1 + z−1)(1 + z−2)

=
w0 + (w0 + w1)z

−1 − w3z
−2

(1 + z−1)(1 + z−2)
,

where we used the fact that, since w2 = −w0 − w1 − w3,

w0 + w1z
−1 + w2z

−2 + w3z
−3 = (1− z−1)(w0 + (w0 + w1)z

−1 − w3z
−2).
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(b) (i) The transfer function of the filter is

G(z) =
1

8
(1 + 2z−1 + 2z−2 + 2z−3 + z−4)

=
1

8
(1 + z−1)(1 + z−1 + z−2 + z−3)

=
1

8
(1 + z−1)2(1 + z−2).

We notice that G(z) cancels the poles of W (z).

(ii) The z-transform of uk is given by

U(z) := Z{uk} =
a

1− z−1
+

bz−1

(1− z−1)2
=
a(1 + z−1) + bz−1

(1− z−1)2
.

Now, we have

G(z)− z−2 =
1

8
(1 + 2z−1 − 6z−2 + 2z−3 + z−4)

=
1

8
(1− z−1)(1 + 3z−1 − 3z−2 + z−3)

=
1

8
(1− z−1)2(1 + 4z−1 + z−2).

Therefore the poles of U(z) are cancelled by zeros of (G(z)− z−2).
(iii) The z-transform of the error ek is given by

E(z) := Z{ek} = −z2U(z) +G(z)(W (z) + U(z))

= (G(z)− z−2)U(z) +G(z)W (z)

=
1

8
(1 + 4z−1 + z−2)(a(1 + z−1) + bz−1)

+
1

8
(1 + z−1)

(
w0 + (w0 + w1)z

−1 − w3z
−2) .

E(z) is a polynomial in z−1 of degree 3, hence e4 = 0 for k ≥ 4. This in turn
implies that yk = ek + uk−2 = uk−2 for k ≥ 4 and hence yk gives the trend two
periods ago.

G(z)
yk

z−2

uk

wk

vk ek
−

(iv)

G(ejθ) =
1

8
(1 + e−jθ)2(1 + e−2jθ)

=
1

8
e−2jθ(ejθ/2 + e−jθ/2)2(ejθ + e−jθ)

= cos θ cos2(θ/2)e−j2θ.
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G(ejθ) = 0 for θ = π/2, π. The magnitude and phase Bode plots are showed
below. In view of the equivalence 1/T = θ/2π, with T being the period, we infer
that the zeros reject the period-4 periodic signals (such as wk) and the period-2
periodic signals.
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♦

Question 12. The plots of G(ejθ) for θ ranging from 0+ to +∞ are shown below (in
random order) for the following transfer functions:

(i)
1

z2(z − 1)
, (ii)

4z + 2

3(z − 1)2
, (iii)

4

(z − 1)3
.

Sketch the complete Nyquist diagrams for each transfer function and use the Nyquist
criterion to determine for what values of gain (if any) closed loop stability will be
achieved when constant gain negative feedback is connected around them.
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Consider the transfer function (i), namely

G1(z) :=
1

z2(z − 1)
.

We see that the phase plot ranging from θ = 0+ to θ = π goes from −90◦, due to the pole
at z = 1, to −540◦, due to the contribution of the pole at z = 1 (−180◦) and of the two
poles at z = 0 (−360◦). This corresponds to diagram (b). Since there is a pole at z = 1,
we have to indent the path of z around z = 1 with a small semi-circular excursion outside
the unit circle, as showed in the plot below.

Re(z)

Im(z)

×××

The complete Nyquist plot is reported below. Since the system has no open-loop unstable B Recall that
the poles on
the unit circle
are considered
as stable poles
in the Nyquist
stability crite-
rion!

B Recall that
the poles on
the unit circle
are considered
as stable poles
in the Nyquist
stability crite-
rion!

poles, then, by virtue of the Nyquist stability criterion, the closed-loop system is stable if
(and only if) the point −1/K has no (counterclockwise) encirclements.
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Re(z)

Im(z)

−ϕ •

To find the value of K that guarantee closed-loop stability we have to compute the first
cross of the real axis of the Nyquist plot. To this aim, we first compute the frequency b An alter-

native way
to compute
θ∗ is to use
the condition
ImG(ejθ

∗
) = 0.

b An alter-
native way
to compute
θ∗ is to use
the condition
ImG(ejθ

∗
) = 0.

θ∗ 6= π which satisfies the phase condition

∠G1(e
jθ∗) = −π.

Since tan
(
θ
2 + π

2

)
= 1/ tan

(
− θ

2

)
= sin θ

cos θ−1 , we have b Define
t := tan θ

2
and make the
substitutions
cos θ = 1−t2

1+t2
,

sin θ = 2t
1+t2

.

b Define
t := tan θ

2
and make the
substitutions
cos θ = 1−t2

1+t2
,

sin θ = 2t
1+t2

.
∠G1(e

jθ) = −∠ej2θ − ∠(ejθ − 1)

= −2θ − arctan

(
sin θ

cos θ − 1

)
= −2θ − θ

2
− π

2

!
= −π,

from which follows that θ∗ = π/5. By computing G(ejθ
∗
) = −1+

√
5

2 = −ϕ we conclude
that the first cross of the real axis is at z = −ϕ. Eventually the closed system is stable if
(and only if)

− 1

K
< −ϕ ⇒ 0 < K <

1

ϕ
.

Consider now the transfer function (ii), namely

G2(z) :=
4z + 2

3(z − 1)2
.

The phase plot is close to −180◦ for θ = 0+ (due to the double pole at z = 1) and goes
back to 180◦ for θ = π (due to the poles and the zero at z = 1/2). This corresponds to
diagram (c).

Re(z)

Im(z)

××◦

The below figure shows the complete Nyquist diagram. Since the system has no open-
loop unstable poles, then no (counterclockwise) encirclements of −1/K are required for
closed-loop stability. Hence we set

− 1

K
< −1

2
⇒ 0 < K < 2.
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Re(z)

Im(z)

−1/2 •

Finally, consider the transfer function (iii), namely

G3(z) :=
4

(z − 1)3
.

The phase of the transfer function is initially close to −270◦ for θ = 0+ and decreases to
−540◦ for θ = π (due to the triple pole at z = 1) . This is diagram (a).

Re(z)

Im(z)

×××

The complete Nyquist diagram is reported below. Since the system has no open-loop un- Z Notice that
the large 540◦

circular arc ac-
counts for the
fact that there
are 3 poles on
the unit circle.

Z Notice that
the large 540◦

circular arc ac-
counts for the
fact that there
are 3 poles on
the unit circle.

stable poles, then no (counterclockwise) encirclements are required for closed-loop stability.
But since all points of the real axis are encircled the closed-loop system is unstable for all
K > 0.

Re(z)

Im(z)

♦
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