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Standard notation

R Set of real numbers
C Set of complex numbers
a∗ Complex conjugate of a ∈ C
F [·] Fourier transform
E[·] Expectation operator
~ Convolution operation

Symbol legend

Z Important fact
b Computations needed
� Use data book
B Pay attention
� Clarification



Question 10. Show the following results for a wide-sense stationary (WSS), real-
valued random process {X(t)} with autocorrelation function rXX(τ) and power spec-
trum SX(ω):

(a) rXX(−τ) = rXX(+τ);

(b) If {X(t)} represents a random voltage across a 1 Ω resistance, the average power
dissipated is Pav = rXX(0);

(c) SX(ω) = SX(−ω);

(d) SX(ω) is real-valued;

(e) Pav =
1

2π

∫ +∞

−∞
SX(ω)dω.

(a) By definition of autocorrelation function we have

rXX(τ) = E[X(t)X(t+ τ)] = E[X(t+ τ)X(t)], ∀t ∈ R.

Now if we substitute in the previous expression t′ := t+ τ , we get

rXX(τ) = E[X(t′)X(t′ − τ)] = rXX(−τ).

(b) Let V = X2(t) denote the voltage across the resistance R = 1 Ω, then, by a well-known
formula, the instantaneous power is given by

P (t) =
V 2

R
=
X2(t)

1
= X2(t) [Watt],

and the average power has the form

Pav = E[P (t)] = E[X2(t)] = rXX(0) [Watt],

where the last equality follows from the definition of autocorrelation function and the
fact that X(t) is WSS.

(c) By definition of Power Spectral Density,

SX(ω) = F{rXX(τ)} =

∫ ∞
−∞

rXX(τ)e−jωτdτ = lim
T→∞

∫ T

−T
rXX(τ)e−jωτdτ.

Now, we apply the change of variable τ → −τ ′, so that we obtain B Any change
of variable af-
fects also the
limits of inte-
gration! In this
case you have
to swap the
sign of the lim-
its. This can
be seen more
clearly if you
use the defi-
nition of im-
proper integral.

B Any change
of variable af-
fects also the
limits of inte-
gration! In this
case you have
to swap the
sign of the lim-
its. This can
be seen more
clearly if you
use the defi-
nition of im-
proper integral.

SX(ω) = lim
T→∞

∫ T

−T
rXX(τ)e−jωτdτ

= lim
T→∞

∫ −T
T

rXX(−τ ′)ejωτ ′(−dτ ′)

= lim
T→∞

(−1) ·
∫ T

−T
−rXX(−τ ′)ejωτ ′dτ ′

= lim
T→∞

∫ T

−T
rXX(−τ ′)ejωτ ′dτ ′.

Finally, by exploiting point (a), we have rXX(−τ ′) = rXX(τ ′) and therefore

SX(ω) = lim
T→∞

∫ T

−T
rXX(τ ′)ejωτ

′
dτ ′ =

∫ ∞
−∞

rXX(τ ′)ejωτ
′
dτ ′ = SX(−ω).
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(d) By splitting the integral in the definition of Power Spectral Density we obtain

SX(ω) =

∫ ∞
−∞

rXX(τ)e−jωτdτ

=

∫ 0

−∞
rXX(τ)e−jωτdτ +

∫ ∞
0

rXX(τ)e−jωτdτ.

Now we use the change of variable τ → −τ ′ in the first integral of the latter expression
and the property in point (a) to get

SX(ω) =

∫ 0

−∞
rXX(τ)e−jωτdτ +

∫ ∞
0

rXX(τ)e−jωτdτ

τ ′→−τ
=

∫ 0

∞
−rXX(−τ ′)ejωτ ′dτ ′ +

∫ ∞
0

rXX(τ)e−jωτdτ

= (−1) ·
∫ ∞
0
−rXX(−τ ′)ejωτ ′dτ ′ +

∫ ∞
0

rXX(τ)e−jωτdτ

(a)
=

∫ ∞
0

rXX(τ ′)ejωτ
′
dτ ′ +

∫ ∞
0

rXX(τ)e−jωτdτ.

By renaming the variable τ ′ = τ and by using the formula 2 cos(ωτ) = ejωτ + e−jωτ ,
we arrive at

SX(ω) =

∫ ∞
0

rXX(τ)ejωτdτ +

∫ ∞
0

rXX(τ)e−jωτdτ

=

∫ ∞
0

rXX(τ)(ejωτ + e−jωτ )dτ

=

∫ ∞
0

rXX(τ)2 cos(ωτ)dτ.

The latter expression must be real since all terms in the integral are real.

(e) From point (b), we have

Pav = rXX(0) = F−1{SX(ω)}
∣∣
τ=0

=
1

2π

∫ ∞
−∞
SX(ω)ejω·0dω =

1

2π

∫ ∞
−∞
SX(ω)dω [Watt].

♦

Question 11. A white noise process {X(t)} is a wide sense stationary, zero mean
process with autocorrelation function:

rXX(τ) = σ2δ(τ)

where δ(τ) is the delta-function centred on δ = 0 whose area is unity and width is
zero. Sketch the Power Spectrum for this process.

A sample function X(t) from such a white noise process is applied as the input to a
linear system whose impulse response is h(t). The output is Y (t).

Derive expressions for the output autocorrelation function rY Y (τ) = E[Y (t)Y (t+ τ)]
and the cross-correlation function between the input and output rXY (τ) = E[X(t)Y (t+
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τ)]. Hence obtain an expression for the output power spectrum SY (ω) in terms of σ2

and the frequency response H(ω) of the linear system.

If the process is correlation ergodic, suggest in block diagram form a scheme for mea-
surement of rXY (τ). What is a possible application for such a scheme?

The power spectrum of the process {X(t)} is given by

SX(ω) =

∫ +∞

−∞
rXX(τ)e−jωτdτ

=

∫ +∞

−∞
σ2δ(τ)e−jωτdτ = σ2ejω0 = σ2.

Thus the power spectrum is a constant of value σ2 over all frequencies and its plot is
depicted below.

ω

SX(ω)

σ2

The output of a linear system with impulse response h(t) is given by the convolution of
the impulse response and the input, namely

Y (t) = h(t) ~X(t) =

∫ +∞

−∞
h(β)X(t− β)dβ.

As a consequence, the autocorrelation function of the output takes the form Z Recall that
for a wide sense
stationary pro-
cess, as {X(t)},
the autocor-
relation func-
tion depends
only on the dif-
ference of the
time instants.

Z Recall that
for a wide sense
stationary pro-
cess, as {X(t)},
the autocor-
relation func-
tion depends
only on the dif-
ference of the
time instants.

rY Y (τ) = E[Y (t)Y (t+ τ)]

= E
[(∫ +∞

−∞
h(β1)X(t− β1)dβ1

)(∫ +∞

−∞
h(β2)X(t+ τ − β2)dβ2

)]
= E

[∫ +∞

−∞

∫ +∞

−∞
h(β1)h(β2)X(t− β1)X(t+ τ − β2)dβ1dβ2

]
=

∫ +∞

−∞

∫ +∞

−∞
h(β1)h(β2)E [X(t− β1)X(t+ τ − β2)] dβ1dβ2

=

∫ +∞

−∞

∫ +∞

−∞
h(β1)h(β2)rXX(τ + β1 − β2)dβ1dβ2

=

∫ +∞

−∞

∫ +∞

−∞
h(β1)h(β2)σ

2δ(τ + β1 − β2)dβ1dβ2

= σ2
∫ +∞

−∞
h(β2 − τ)h(β2)dβ2

= σ2h(−τ) ~ h(τ). (1)
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Similarly, the cross-correlation function between the input and the output takes the form

rXY (τ) = E[X(t)Y (t+ τ)]

= E
[
X(t)

(∫ +∞

−∞
h(β)X(t+ τ − β)dβ

)]
= E

[∫ +∞

−∞
h(β)X(t)X(t+ τ − β)dβ

]
=

∫ +∞

−∞
h(β)E [X(t)X(t+ τ − β)] dβ

=

∫ +∞

−∞
h(β)rXX(τ − β)dβ

=

∫ +∞

−∞
h(β)σ2δ(τ − β)dβ

= σ2
∫ +∞

−∞
h(β)δ(τ − β)dβ2

= σ2h(τ).

Finally, by taking the Fourier transform of (1), we get the power spectrum of {Y (t)} Z Recall that
the Fourier
transform of
a convolu-
tion product
is the (stan-
dard) product
of the Fourier
transforms.

Z Recall that
the Fourier
transform of
a convolu-
tion product
is the (stan-
dard) product
of the Fourier
transforms.

F{rY Y (τ)} = SY (ω) = σ2H∗(ω)H(ω) = σ2|H(ω)|2,

since H∗(ω) is the Fourier transform of h(−τ).

Now, if the process is correlation ergodic, we can replace the ensemble-average by the time-
average in the computation of correlations. Hence, by considering the cross-correlation
function between {X(t)} and {Y (t)}, we get

rXY (τ) = E[X(t)Y (t+ τ)] = E[X(t− τ)Y (t)] = lim
T→∞

1

2T

∫ T

−T
X(t− τ)Y (t)dt,

and for some suitably large choice of T , we can approximate the latter quantity by

rXY (τ) ≈ 1

2T

∫ T

−T
X(t− τ)Y (t)dt.

A scheme for the estimation of rXY (τ) is given by the following steps:

1. pass X(t) through a delay of τ , in order to obtain X(t− τ),

2. multiply X(t− τ) by Y (t),

3. filter X(t− τ)Y (t) using a low-pass filter G2T (s) with impulse response whose main
lobe is of duration roughly 2T between its half-amplitude points (this accounts for
the integration 1

2T

∫ T
−T X(t− τ)Y (t)dt).

Eventually, by varying the delay τ , we can obtain an estimate r̂XY (τ) of the cross-
correlation function. The figure below shows the block diagram representation of the
previously described procedure.
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e−τs

time delay

G2T (s)

low-pass filter

X(t)

Y (t)

X(t− τ) X(t− τ)Y (t) r̂XY (τ)

Using the estimated cross-correlation function r̂XY (τ), we can estimate the impulse re-
sponse of the system as follows

ĥ(τ) =
r̂XY (τ)

σ2
.

Therefore the proposed scheme can be regarded as a “System Identification” technique. ♦

Question 12. It is desired to predict a future value X(t+T ) of a WSS random process
{X(t)} from the current value X(t) using the formula:

X̂(t+ T ) = cX(t)

where c is a constant to be determined.

If the process has autocorrelation function rXX(τ), show that the value of c which
leads to minimum mean squared error between X(t+ T ) and X̂(t+ T ) is

c =
rXX(T )

rXX(0)

Hence obtain an expression for the expected mean squared error in this case.

If {X(t)} has non-zero mean, suggest an improved formula for X̂(t+T ), giving reasons.

Consider the prediction error at time t

e(t) := X(t+ T )− X̂(t+ T ) = X(t+ T )− cX(t).

By taking the expectation of e2(t) we obtain the mean squared prediction error

MSE := E[e2(t)] = E[(X(t+ T )− cX(t))2]

= E[X2(t+ T )− 2cX(t+ T )X(t) + c2X2(t)]

= (1 + c2)E[X2(t)]− 2cE[X(t+ T )X(t)]

= (1 + c2)rXX(0)− 2crXX(T ), (2)

where we used the fact that the process {X(t)} is WSS which implies that E[X2(t+T )] =
E[X2(t)] = rXX(0). The mean squared prediction error is a convex quadratic function of c,
therefore it admits a minimum cmin which can be found by equating to zero the derivative
of MSE with respect to c, namely

dMSE

dc
= 2crXX(0)− 2rXX(T )

!
= 0 ⇒ cmin =

rXX(T )

rXX(0)
.
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The minimum mean squared error is given by

MSEmin = (1 + c2min)rXX(0)− 2cminrXX(T )

=

(
1 +

r2XX(T )

r2XX(0)

)
rXX(0)− 2

r2XX(T )

rXX(0)
rXX(T )

=
r2XX(0) + r2XX(T )− 2r2XX(T )

rXX(0)

=
r2XX(0)− r2XX(T )

rXX(0)
.

Now assume that {X(t)} has non-zero mean, specifically E[X(t)] = µ and define the zero-
mean process X̃(t) := X(t)− µ. The autocorrelation of {X(t)} can be written as

rXX(τ) = E[X(t+ τ)X(t)]

= E[(X̃(t+ τ) + µ)(X̃(t) + µ)]

= rX̃X̃(τ) + µ2.

By applying formula (2) as it is, we get the following mean squared prediction error

MSEmin =
r2XX(0)− r2XX(T )

rXX(0)

=
(rXX(0) + rXX(T ))(rXX(0)− rXX(T ))

rXX(0)

=

(
rX̃X̃(0) + µ2 + rX̃X̃(T ) + µ2

rX̃X̃(0) + µ2

)
(rX̃X̃(0)− rX̃X̃(T ))

=

(
1 +

rX̃X̃(T ) + µ2

rX̃X̃(0) + µ2

)
(rX̃X̃(0)− rX̃X̃(T )).

Now, since rX̃X̃(0) ≥ rX̃X̃(T ) (see the clarification box in the next page), it follows that

1. rX̃X̃(T )+µ2

rX̃X̃(0)+µ2
≥ rX̃X̃(T )

rX̃X̃(0) ,

2. rX̃X̃(0)− rX̃X̃(T ) ≥ 0,

we conclude that,

MSEmin =

(
1 +

rX̃X̃(T ) + µ2

rX̃X̃(0) + µ2

)
(rX̃X̃(0)− rX̃X̃(T )) >

r2
X̃X̃

(0)− r2
X̃X̃

(T )

rX̃X̃(0)
,

the addition of a non-zero mean µ increases the mean squared error and, therefore, the
smallest possible MSE is attained for a zero-mean process.
To improve the prediction performance, we can subtract the mean of the process and then
apply the original predictor to the zero-mean remainder process {X̃(t)},

ˆ̃X(t+ T ) = cminX̃(t), cmin =
rX̃X̃(T )

rX̃X̃(0)
=
rXX(T )− µ2

rXX(0)− µ2
.

In this way, the “optimal” predictor of the original process {X(t)} can be recovered as

X̂(t+ T ) = ˆ̃X(t+ T ) + µ.
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� Here we prove that for a WSS process {X(t)} and for all T

rXX(0) ≥ rXX(T ),

i.e. the autocorrelation function of a WSS process achieves its maximum value at 0.
Given any two random variables X and Y , the Cauchy-Schwarz inequality reads as

|E[XY ]| ≤
√
E[X2]E[Y 2],

or equivalently E2[XY ] ≤ E[X2]E[Y 2]. Using this result, we have that for all T 6= 0,

r2XX(T ) = E2[X(t)X(t+ T )] ≤ E[X2(t)]E[X2(t+ T )] = r2XX(0),

where we used the fact that {X(t)} is WSS.

♦
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