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Standard notation

R Set of real numbers
log(a) base 2 logarithm of a ∈ R
PX(·) Probability distribution of rv X
E[·] Expectation operator

Symbol legend

Z Important fact
b Computations needed
� Use data book
B Pay attention
� Clarification



Question 3. Show that for statistically independent random variables,

H(X1, X2, . . . , Xn) =
n∑
i=1

H(Xi).

By definition of joint entropy, we have

H(X1, X2, . . . , Xn) = −
∑

x1,...,xn

PX1...Xn(x1, . . . , xn) logPX1...Xn(x1, . . . , xn), (1)

where PX1...Xn(X1 = x1, . . . , Xn = xn) is the joint probability distribution of X1, . . . , Xn

evaluated at X1 = x1, . . . , Xn = xn. Since by assumption X1, . . . , Xn are independent, we
have

PX1...Xn(x1, . . . , xn) = PX1(x1)PX2(x2) · · ·PXn(xn), ∀x1, . . . , xn.

Consequently (1) can be rewritten as

H(X1, X2, . . . , Xn) = −
∑

x1,...,xn

PX1(x1) · · ·PXn(xn) logPX1(x1) · · ·PXn(xn)

= −
∑

x1,...,xn

PX1(x1)PX2(x2) · · ·PXn(xn) logPX1(x1) + . . .

−
∑

x1,...,xn

PX1(x1)PX2(x2) · · ·PXn(xn) logPXn(xn)

= −
∑
x1

PX1(x1) logPX1(x1)

( ∑
x2,...,xn

PX2(x2) · · ·PXn(xn)

)
+ . . .

−
∑
xn

PXn(xn) logPXn(xn)

( ∑
x1,...,xn−1

PX1(x1) · · ·PXn−1(xn−1)

)

= −
∑
x1

PX1(x1) logPX1(x1)

(∑
x2

PX2(x2) · · ·
∑
xn

PXn(xn)

)
+ . . .

−
∑
xn

PXn(xn) logPXn(xn)

(∑
x1

PX1(x1) · · ·
∑
xn−1

PXn−1(xn−1)

)
= −

∑
x1

PX1(x1) logPX1(x1) + · · · −
∑
xn

PXn(xn) logPX1(xn)

= H(X1) +H(X2) + · · ·+H(Xn),

and we are done. Z Another
way to solve
the problem
is to use the
chain rule
of entropies
and recall the
condition for
equality in the
conditioning
theorem.

Z Another
way to solve
the problem
is to use the
chain rule
of entropies
and recall the
condition for
equality in the
conditioning
theorem.

♦

Question 4. While we cover in 3F1 and 4F5 the application of Shannon’s theory
to data compression and transmission, Shannon also applied the concepts of entropy
and mutual information to the study of secrecy systems. The figure below shows a
cryptographic scenario where Alice wants to transmit a secret plaintext message X
to Bob and they share a secret key Z, while the enemy Eve has access to the public
message Y .
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(a) Write out two conditions using conditional entropies involving X, Y and Z to
enforce the deterministic encryptability and decryptability of the messages.

(b) Shannon made the notion of an “unbreakable cryptosystem” precise by saying that
a cryptosystem provides perfect secrecy if the enemy’s observation is statistically
independent of the plaintext, i.e., I(X;Y ) = 0. Show that this implies Shannon’s
much cited bound on key size

H(Z) ≥ H(X),

i.e., perfect secrecy can only be attained if the entropy of the key (and hence its
compressed length) is at least as large as the entropy of the secret plaintext.

(c) Vernam’s cipher assumes a binary secret plaintext message X with any probability
distribution PX(0) = p = 1 − PX(1) and a binary secret key Z that’s uniform
PZ(0) = PZ(1) = 1/2 and independent of X. The encrypter simply adds the
secret key to the plaintext modulo 2, and the decrypter by adding the same key
to the ciphertext can recover the plaintext. Show that Vernam’s cipher achieves
perfect secrecy, i.e., I(X;Y ) = 0.

(a) Since the entropy of a function f(·) given its argument is zero, e.g., for any random
variable X, H(f(X)|X) = 0, one condition is given by

H(Y |X,Z) = 0

because the ciphertext Y is a deterministic function of the secret plaintext message X
and the secret key Z. The other condition is given by

H(X|Y,Z) = 0

because the secret plaintext message can be inferred from the ciphertext Y and the
key Z.

(b) Since the mutual information of X and Y satisfies

I(X;Y ) = H(X)−H(X|Y ) = 0,
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we have

H(X) = H(X|Y ) = H(X,Z|Y )−H(Z|X,Y )

≤ H(X,Z|Y )

= H(Z|Y ) +H(X|Z, Y )

= H(Z|Y )

≤ H(Z).

The first line follows from the chain rule of entropies, specifically

H(X,Y, Z) = H(Y ) +H(X|Y ) +H(Z|X,Y )

⇒ H(X|Y ) = H(X,Y, Z)−H(Y )−H(Z|X,Y ) = H(X,Z|Y )−H(Z|X,Y ).

The third line from the fact that in order to guarantee deterministic decryptability,
H(X|Y,Z) = 0 (see point (a)). The last line is a consequence of the conditioning
theorem. Z Recall that

the condition-
ing theorem
states that
“conditioning
on a random
variable only
ever reduces
entropy”.

Z Recall that
the condition-
ing theorem
states that
“conditioning
on a random
variable only
ever reduces
entropy”.

(c) We have to prove that

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = 0.

To this end, we compute H(Y ) and H(Y |X). Let us start with

H(Y ) = −PY (0) logPY (0)− (1− PY (0)) log(1− PY (0)). (2)

We have

PY (0) =
∑
x,z

PXY Z(x, 0, z)

=
∑
x,z

PY |XZ(0|x, z)PX(x)PZ(z)

= p
1

2
+ (1− p)1

2
=

1

2
,

where the last step follows from the fact that PY |XZ(0|x, z) = 1 if x + z mod 2 = 0,
i.e. either x+ z = 2 or x+ z = 0, and PY |XZ(0|x, z) = 0 otherwise. By virtue of (2),
the latter equation in turn implies

H(Y ) = 1.

Now, in order to compute

H(Y |X) = PX(0)H(Y |X = 0) + PX(1)H(Y |X = 1),

we first calculate H(Y |X = 0) and H(Y |X = 1) using

H(Y |X = x) = −PY |X(0|x) logPY |X(0|x)− PY |X(1|x) logPY |X(1|x), x = 0, 1. (3)

We have

PY |X(0|0) =
PXY (0, 0)

PX(0)

=
PXY Z(0, 0, 0) + PXY Z(0, 0, 1)

PX(0)

=
PX(0)PZ(0)PY |XZ(0|0, 0) + PX(0)PZ(1)PY |XZ(0|0, 1)

PX(0)

=
1
2p+ 0

p
=

1

2
,
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and similarly

PY |X(0|1) =
PXY (0, 1)

PX(1)

=
PXY Z(1, 0, 0) + PXY Z(1, 0, 1)

PX(1)

=
PX(1)PZ(0)PY |XZ(1|0, 0) + PX(1)PZ(1)PY |XZ(1|0, 1)

PX(1)

=
0 + 1

2(1− p)
1− p

=
1

2
.

Therefore, by (3), we obtain

H(Y |X = 0) = H(Y |X = 1) = 1,

which in turn implies

H(Y |X) = PX(0)H(Y |X = 0) + PX(1)H(Y |X = 1) =
1

2
p+

1

2
(1− p) = 1.

Thus, we get
I(X;Y ) = H(Y )−H(Y |X) = 1− 1 = 0.

♦

Question 7. A symmetric binary communications channel operates with signalling
levels of ±A volts at the detector in the receiver, and the rms noise level at the
detector is B volts.

(a) If the output of this channel is quantised by a two-level quantiser with threshold
0, determine the probability of error on the resulting channel and hence, based on
mutual information, calculate the theoretical capacity of this channel for error-free
communication in bits per channel use. Compute a numerical value for A = 2 and
B = 0.5.

(b) If the binary signalling were replaced by symbols drawn from a continuous process
with a Gaussian (normal) pdf with zero mean and the same mean power at the
detector, determine the theoretical capacity of this new channel. Again compute
a numerical result for the same signal and noise power as in the previous question.

(c) (Computer Exercise) In MATLAB/Octave, plot the two capacities above in func-
tion of the Signal to Noise Ratio (SNR) on a scale from -5dB to 15dB, where
SNR [dB] = 10 log10(V

2
0 /σ

2). A third channel of interest that is closely related to
the two channels studied is the channel with binary signal levels (as in (a)) but
continuous output (as in (b)). The capacity of this channel can only be computed
numerically. You may use the following approximation:

s2 = 4*10^(SNR/10);
eta = linspace(-20,20,1e5);
x=exp(-(eta-s2/2).^2./(2*s2))/sqrt(2*pi*s2).*log(1+exp(-eta))/log(2);
C = 1-trapz(x)*(eta(2)-eta(1));
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Compare the capacity of the three channels and discuss the practical implications
of your findings.

(a) From the equation (2.15) of the lecture notes of the 3F1 Random Processes part, we
know that the probability of error in the binary detector is given by

ε = Q

(
A

B

)
where Q(x) = 1√

2π

∫∞
x e−u

2/2du. Now, the channel with a two-level symmetric quan-
tiser is equivalent to the Binary Symmetric Channel for which we know that capacity
is achieved for uniform input symbols, giving rise to uniform output symbols, and it
takes the form (see the lecture handouts)

CBSC = 1− h(ε),

where h(x) := −x log x − (1 − x) log(1 − x) is the binary entropy function. For the
values A = 2 and B = 0.5, we get

CBSC = 0.99946 [bit/sample].

(b) In this case the channel is an Additive White Gaussian Noise (AWGN) channel for
which the capacity is given by (see the lecture handouts)

CBSC =
1

2
log

(
1 +

A

B

)
.

For the values A = 2 and B = 0.5, we get

CBSC =
1

2
log (1 + 16) = 2.0437 [bit/sample].

(c) The plot is shown below.
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We observe that there is no loss at low SNR for using binary signalling as long as the
output remains continuous. As the SNR increases, all binary signalling methods hit
a 1 bit/use ceiling whereas the capacity for continuous signalling continues to grow
unbounded. ♦
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Question 8. A discrete memoryless source has an alphabet of eight letters, xi, i =
1, 2, . . . , 8 with probabilities 0.25, 0.20, 0.15, 0.12, 0.10, 0.08, 0.05 and 0.05.

(a) Determine the entropy of the source.

(b) Construct the Shannon-Fano code for this source. Try both Fano’s and Shannon’s
constructions. Determine the average codeword length L.

(c) Use the Huffman algorithm to determine a optimal binary code for the source
output. Determine the average codeword length L.

(a) The entropy of the source is given by

H(S) = −(0.25 log 0.25 + 0.20 log 0.20 + 0.15 log 0.15 + 0.12 log 0.12+

0.10 log 0.10 + 0.08 log 0.08 + 0.05 log 0.05) = 2.798 [bits].

(b) The table below shows, for each source symbol, the probabilities (pi), cumulative
probabilities (fi), cumulative probabilities in binary notation (fi,bin), codeword lengths
(d− log pie), Fano’s (F) and Shannon’s (S) codewords

symbol pi fi fi,bin d− log pie F S
x1 0.25 0 0.0000000... 2 00 00
x2 0.20 0.25 0.0100000... 3 010 010
x3 0.15 0.45 0.0110011... 3 011 011
x4 0.12 0.60 0.1001100... 4 1000 1001
x5 0.10 0.72 0.1011100... 4 1001 1011
x6 0.08 0.82 0.1101000... 4 1010 1101
x7 0.05 0.90 0.1110011... 5 10110 11100
x8 0.05 0.95 0.1111001... 5 10111 11110

Fano’s codewords are obtained by growing a prefix-free tree to match the lengths
dlog pie, as shown in the diagram below. Z Note that

there is an
unused leaf
in the Fano’s
tree construc-
tion, namely
11. This shows
clear potential
to improve this
code.

Z Note that
there is an
unused leaf
in the Fano’s
tree construc-
tion, namely
11. This shows
clear potential
to improve this
code.

0

0 1

0 1

1

0

0

0 1

1

0 1

0 1

1
x1

x2 x3

x4 x5 x6

x7 x8
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Shannon’s construction consists in writing the cumulative probabilities in the third
colum of the table above in binary notation and truncating those at the specified
lengths dlog pie (in the clarification box at the end of this problem is described a
procedure to perform decimal to binary conversion). The average codeword length L
is the same Fano’s and Shannon’s codes, since they have the same codeword lengths,
and is given by

L = 0.25 · 2 + 0.20 · 3 + 0.15 · 3 + 0.12 · 4 + 0.10 · 4 + 0.08 · 4 + 0.05 · 5 + 0.05 · 5
= 3.25 [bits].

(c) The Huffman algorithm consists in merging the least probable symbols at every itera-
tion. The procedure is described in the diagram below.

0.25

0.2

0.15

0.12

0.10

0.08

0.05

0.05

0.22

0.1

0.42

0.18

0.33

0.58 1.0

The Huffman’s codewords (H), obtained from the previous diagram by labelling the
upper branch 0 and the lower branch 1, are listed in the following table.

symbol pi H
x1 0.25 00
x2 0.20 01
x3 0.15 010
x4 0.12 110
x5 0.10 111
x6 0.08 0110
x7 0.05 01110
x8 0.05 01111

The average codeword length is given by

L = 0.25 · 2 + 0.20 · 2 + 0.15 · 3 + 0.12 · 3 + 0.10 · 3 + 0.08 · 4 + 0.05 · 5 + 0.05 · 5
= 2.83 [bits].
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� There is a simple procedure to convert a decimal fraction to binary:

Step 1. Begin with the decimal fraction and multiply by 2. The whole number
part of the result is the first binary digit to the right of the point. For instance,
by considering the decimal fraction 0.625, we have 0.625 × 2 = 1.25, hence the
first decimal digit of the right of the point is 1.

Step 2. We disregard the whole number part of the previous result and multiply
by 2 once again. In our example, we have 0.25×2 = 0.5, hence the second decimal
digit of the right of the point is 0.

Step 3. We iterate Step 2 until we get a zero as our decimal part or until we
recognize an infinite repeating pattern. In our example, the second iteration of
Step 2 yields 0.5×2 = 1.00. Since we get a zero as decimal part we conclude that
the binary expansion of 0.625 is 0.101.

♦
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