Motivating questions:
1. How to define interconnection for stochastic systems?
 - Interconnection as coupling
 - Modelling of probability distributions
2. What is the role of noise in biology?
 - Noise as an unavoidable nuisance
 - Synchronization
 - Robustness
 - Connecting different scales

Stochastic processes: a behavioral perspective

Giaco Baglio 1,2

1 Dipartimento di Ingegneria dell’Informazione, University of Padova
2 Department of Engineering, University of Cambridge

Behavioral systems theory:
a framework for modelling open systems

Invariance properties in the space of LTI stochastic processes

Static case

Rw = e

\(e = n \text{-dim. Gaussian vector } N(\mu, \Sigma) \)

Equivalence class:

\[U \in \mathbb{R}^{n \times n} \]

Unimodular invariance of covariance matrices

Dynamic case

\[R(\sigma, e) w(t) = e(t) \]

\(e(t) = n \text{-dim. Gaussian process } \mathcal{GP}(\mu(t), \Sigma(t, x)) \)

Equivalence class:

\[U \in \mathbb{R}^{n \times n} \]

Affine invariance of covariance matrices

Acknowledgements: The research leading to these results has received funding from the European Research Council under the Advanced ERC Grant Agreement Switchlet n.670645

References:

Motivations

How to define interconnection for stochastic systems?

Interconnection as coupling
- Modelling of probability distributions

Interconnection as variable sharing
- Modelling of event spaces

Potential applications to neuroscience

Interconnection of neurons = interconnection of stochastic processes

Summary and future directions

Future research directions include the analysis of continuous-time stochastic processes and potential applications to interconnected biological systems affected by noise.

Acknowledgements: The research leading to these results has received funding from the European Research Council under the Advanced ERC Grant Agreement Switchlet n.670645

References: