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Abstract— In this technical note, we establish closed-form ex-
pressions of the entries of the (output) controllability Gramian
of a class of bidirectional line networks. Also, we characterize
the asymptotic behavior of these entries in two important cases.

I. PROBLEM FORMULATION

We consider networks governed by linear time-invariant
continuous-time dynamics

z(t) = Ax(t) + Bu(t)

y(t) = C(t) M

where z(t) € R™, u(t) € R™, y(t) € RP denote the vectors
of nodes’ states, inputs, and outputs at time ¢, respectively.
The matrix A € R™*™ denotes the (weighted and directed)
adjacency matrix of the network, and B € R™"*™ and C' €
RP*™ are the input and output matrices, respectively. These
matrices are chosen so as to single out prescribed sets of
input and output nodes of the network, that is,

B = [ekl ekm} , C= [etl ceeey

where K = {k1,k2,...,kn} and T = {t1,t0,...,t,} are
the sets of input and output nodes, respectively, and {e; }7"_;
denote the vectors of the canonical basis of R™.

If A is Hurwitz stable, the infinite-horizon output control-
lability Gramian of is well-defined and given by

W = / Ce*BBT A tCT dt. (3)
0

The (output) controllability Gramian is linked to the con-
trollability properties of the network, in that its eigenvalues
describe how much control energy is needed to reach differ-
ent output directions using a minimum-norm control input [].

In this note, we analyze the output controllability Gramian
of a simple yet insightful class of networks. Namely, we
consider bidirectional line networks which are described by
the following Toeplitz adjacency matrix

[y B/ O e 0]
Ba v Bl :
A=10 Ba 4 . 0| )
. B/
L0 -0 Ba vy ]

Giacomo Baggio (baggio@dei.unipd.it) and Sandro Zampieri are
with the Department of Information Engineering, University of Padova, Italy.

where o € R and 5 € R are positive parameters and v € R
is chosen such that v < —20 so as to enforce stability. Notice
that the parameter « quantifies, in a sense, the “degree”
of directionality of the network. Indeed, the larger « the
stronger is the connection from node ¢ to node ¢ 4+ 1 and
the weaker is the connection in the opposite direction. Thus,
the network in (@) represents a simple, prototypical archi-
tecture in which the effects of directionality (or, in algebraic
terms, non-normality) and stability are completely decoupled
and can be freely tuned. More precisely, the directionality
is regulated by parameter «, whereas the eigenvalues are
determined by parameters § and ~y. Finally, for later use, we
observe that A can be rewritten as

A=DSD™!, (5)
where
[v B 0]
B v B :
: . B
o - 0 B 7

is a symmetric matrix featuring the same spectrum of A,
and D = diag[l o a® --- o™ 1] a diagonal matrix whose
diagonal encodes the degree of directionality of the network.

II. FINITE-SIZE ANALYSIS OF W

In this section, we establish a closed-form expression of
the controllability Gramian (3).

Theorem 1: (Closed-form expression of VV) Consider the
output controllability Gramian (3)) where A is as in (), and
B and C are as in (Z). For all 4,5 € {1,...,p}, it holds

—1N-1 atitti—2k

N2 Z Z Z v + B (cos () + cos (x1))

kek £=1 h=1
-sin (¢;z¢) sin (kxg) sin (¢jxp) sin (kzp),  (7)

Wi = -

where z; :=in/N,i=1,...,N —1,and N :=n+ 1.
Before presenting the proof of Theorem (I)), we state an
instrumental lemma, whose proof can be found in, e.g., [,
Ex. 7.2.5].
Lemma 2: (Eigenvalues and eigenvectors of S) The ma-
trix S as defined in (6)) admits the spectral decomposition

S =VTAY, (®)
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where A = diag[A\; -~
the eigenvalues of S

An] is a diagonal matrix containing

/\k=7+25c05(nkﬂ-1), ke{l,...,n}, 9)

and the columns of V = [vl
(normalized) eigenvectors

vn] the corresponding

km
n+1
2km
n+1

sin

2 sin

. ke{l,....,n}. (10

: nkm
an (222)

Proof of Theorem [I} In view of the definition of B
in (@), it follows that BBT = Y ke ekeg. Thus, we can
rewrite YV as

W= / Ce*BBT A tOT dt

/ Cett (Z erey ) ATt oT gt
ke
= Z C’eAtekekT.eATtCTdt. (11)

ke

From the definition of C' in @), the (4, j)-th entry of W reads

W]i; = Z e/ (/ etepe] A’ dt)
0

ke

12)

Next, by using the decomposition of A in (3), we have

Wi = Zet (/ DeStD Yeye] D Stht) o,
kex
=2 %‘%D (/ €StekeZeStdt> Dey,
kex & 0
obitti—2 ©
:ZW(/ e, €7 epey e etdt>. (13)
kex 0

Now, we focus on the integral terms in (13)), that is,

Liji = /OO e;reSteke,;reStet dt. (14)
0
By Lemma [2] it holds
Lijk = /OO etTiVTeAtVekekTVTeAtVetjdt
0
= /OO vtTeAtvkvk e vt dt. (15)
0

Note that, by direct computation,

2
v My, =

hm km
Sln( P ) At Sln<n+1)

: nkm
sin (n+1) ernt sin (m)

Chr Ckm
_ Agt o
_lee sin ( 1)”1(”“),

which plugged into (T3] yields

(16)

o0
Iy :/ v Mgl Moy dt
0

- o Y (1

) ( lkm >

=1 h=1

- sin Ity sin / ePetAn)tqy
n+1 n+ 1

n n

. ﬁtnr
- n+1 Zh )\h-i-/\g n<n+1>'

(15 (25 (25)

n+1 VSRRV Z; v+ (cob( erl)+cos (n%l))

. ft;m . Lkm . ht;m\ . hkm
- sin sin sin sin ,
n+1 n+1 n+1 n+1

where in the step we used the fact that
fooo ePetAn)t — /\[i)\h, and in the last step the analytic
expression of \r, k € {1,...,n}, in Lemma [2| Finally,
equation (7) follows by substituting into (13). [ |

An interesting scenario is when the input signal enters the
network from the first node of the network (fC = {1}). In this
case, two extreme input/output configurations are when the
input and output nodes coincide (X = {1} and T = {1}),
and when they are placed as far away as possible (K = {1}
and 7 = {n}). In these two extreme cases, it is possible to
establish simplified versions of the expressions in Theorem [I]

Corollary 3: (Closed-form expression of W for KK = {1}
and T = {1}) Consider the output controllability Gramian
(@) where A is as in @), and B and C are as in (2). Further,

second

let ; := in/N,i=1,...,N—1,and N := n + 1. If
K = {1} and T = {1}, then it holds
== sin? () sin? ()
= . (18
N2 ;‘: hz:l v+ [ (cos xg)+cos(xh)) (18)
Proof: Equation (I8) directly follows by substituting
k=t;=t;=1in (). n

Corollary 4: (Closed-form expression of W for K = {1}
and T = {n}) Consider the output controllability Gramian
where A is as in (@), and B and C are as in (2). Further,



let z; .= in/N,i=1,....N—1,and N := n+ 1. If
K = {1} and T = {n}, then it holds

202(V=2) T T (1) gin? (2) sin? ()

N2 = iy + B (cos (wg) + cos (zn))
(19)

Proof: By letting k =1 and t; = t; = n, equation (7)
takes the form

W= -

1N 1 2(71 1)
N2 ;;7—&-6 (cos ( Z”)—i—cos(}]l\,)).

o (fnm\ . [Llm\ . hnm\ . hr
- sin (N) sin (N) sin <N) sin (N) , (20)

and equation (T9) follows from (20) by using the identity

g (qm) si am_
1mn | —— = Sin _— iy
N ny1 1

= (=1)7"!sin (%) , g€ L.

III. ASYMPTOTIC ANALYSIS OF W

In this section, we study the large n asymptotic behavior
of the controllability Gramian (3) for the line network in
(@) and the two extreme scenarios discussed in Corollaries
[3| and [ that is, when the input and output nodes coincide
(K = {1} and T = {1}), and when are placed as far away
as possible (K = {1} and T = {n}).

Theorem 5: (Asymptotic behavior for K = T = {1})
Consider the output controllability Gramian (3) where A is
as in @), and B and C are as in (2). If K = {1} and
T = {1}, then as n — oo, W converges to a positive
constant satisfying

2 2
T ew< T 1)
—2v+4p8 =2y —4p

Proof: Note that (I8) can be equivalently written as
s sin? () sin? ()

22
N2 ZZ(:) hZ;J v+ B (cos ( :u)—i—cos(xh))7 22)

where we used the fact that the terms in the summation
corresponding to the indices £ = 0 and A = 0 vanish. In
the limit n — oo, equation @]) converges to the integral

sin? (z) sin? (y)
W=— dxdy. (23
[ ) ey e @
Since —y — 28 < v+ B (cos (z) + cos (y)) < —v + 206, we
can bound the integral as
21 21

—= W< ———, (24

-+ 2ﬁ -y =26

with 1 = [ [T sin? (x) sin? (y) dedy = 72/4, from
which (21I) ) follows. u

When K = T = {1}, Corollary [5| guarantees that the
Gramian is always bounded and independent of n. Further,
for very stable networks (large |v|), the inequalities in
yields the estimate W ~ —7%/(27).

Theorem 6: (Asymptotic behavior for K = {1} and T =
{n}) Consider the output controllability Gramian (3) where
Ais as in @), and B and C are as in (). If £ = {1} and
T = {n}, then as n — oo it holds

W’V%((X(H— H2—1>)2n

where £ := —v/(28) > 1 and p > 0 is a real constant
independent of n and depending only on «, 3 and ~.

To prove Theorem [6] we will make use of the following
lemma, that has been adapted from [2, Sec. 4(b)].

Lemma 7: Let n > 0 and x > 1 be real numbers. Then,
as n — oQ,

(25)

—in(a+y) o
[W/,ﬂ 2k — cos(z) — cos(y) Ty
é‘ 3 2n
N%(/{— % f1) . (26)

where & := 1/(2y/mr(K% — 1)1/4).
Proof of Theorem |6} Let N :=n + 1 and define
1 sin?(272)sin?(27y)

U(z,y) = 27)

B 2k — cos(2mz) — cos(2my)’

In view of Corollary 4] we can write WV as
2(N— 2) N—1N-1

¢ h
€+h e
<2N’2N>‘ (28)
{=1 h=1

Notice that ¥(z,y) = U(—z,y) = ¥(z,—y) = U(—2x,—y)

and ¥(0,y) = ¥(1/2,y) = ¥(z,0) = ¥(z,1/2) = 0.
Therefore, we can rewrite (28)) as
O[2(N72) 2N 2N E h
= Dy ). 2
W= 0 gy ) @

£=1 h=1

The latter equation follows from the fact that each term in
(28) appears four times in [29) and the additional terms
corresponding to indices ¢,h € {N,2N} vanish. Next, we
can express it in terms of the 2D Fourier series

\I](xvy) = Z ,(/)T’Se2ﬂ'i(’[‘l+8y)’

r,SEZ

(30)

which converges absolutely since ¥(z,y) is smooth, and
substitute the latter series in (29). By doing so, we obtain

l+h Z 7/)1"562771 % ﬁ)

Q(N—Q) 2N 2N

W:O}TZZ

£=1 h=1 r,s€Z
a?(N=2) e 2N [ sh
Z ¢7 SZ Z 2N (_1)h627r12N
r,8€Z =1 h=1
2(N—-2
=202 N " Py (a1 N(2st1)s 31
r,SEZ

where in the last step we used the identity, g € Z,

oN
Z(*l)he%qi%}v — {QN’
0,

h=1

if h =N mod 2N,

otherwise.



The Fourier coefficients in (30) read as

N(2r+1),N (25+1)

/_,r [o

where W (z,y) := W (x/27,y/27). Notice that the function
WU(z,y) can be extended to a complex analytic function in
the complex strip {z,y € C : |Im(x)| < K, |Im(y)| <
K}, where K := cosh™'(x) = In (k + vk — 1). Thus, as
a consequence of the Paley—Wiener Theorem (e.g., see [3,
§VL.7]), the Fourier coefficients in (32)) decay exponentially
with a rate that satisfies, for all € > 0,

—iN((2r+1);c+(2s+1)y) dx dy7 (32)

(6)6—2KN(T+S+1—6)

—2N (r+s+1—¢)
£) (Ii+ VK2 — 1)

2N (r+s+1—¢)
< M(e) (FL -

VN (2r+1),N(2s+1)| < M

K2 —1

(33)
where M (¢) is a positive real constant depending only on ¢

. . . -1

and in the last step we used the identity (k + V&2 — 1) =
(k= VK2 —1). We next show that the dominant (i.e.,
slowest decaying) coefficients are those corresponding to
the “simplest” terms of the series (]3;1'[), namely ¥n n,
Y_nN,N,» YN,—N, Y_nN,—n. Since the Fourier coefficients
satisfy ¥, = Y_rs = VUr_s = Y_, _,, the “simplest”
four coefficients of the series (31)) are all equal to ¢y n. By
expanding the numerator of ¥(z,y) in exponential form and
using again the Paley—Wiener Theorem, we have

L

—1N(;v+y)
167r26 /_,r/_7r 2k — cos(x) — cos(y)

I(N)

YN N = IN@+Y) dg dy

dzdy +R, (34)

where, for all £ > 0, and R is a real number satisfying |R| <
L(e) (k — VK? — 1)N(3_5) with L(e) being a positive real
constant depending only on ¢. Finally, by virtue of Lemma
the integral I(N) features the large N asymptotic estimate

I(N) ~ - (n — VR 1)2N, (35)

VN
where ¢ := 1/(2/mr(k% —1)'/4). Thus, from the latter
estimate and the bounds in (33) and (34), it follows that,

for large N, (31) has the asymptotics

W ~ 20202 (4 N)
~ 8a2N=2[(N)

£a2(N-2) ( 5 ) 2N
~>—— k= VKZ—1 36
w25V o
After some rearranging, the above expression yields the large
n asymptotics (23). [

As a consequence of Theorem [f] we have the following
immediate result that characterizes the values of the param-
eters «, [, v for which W either converges to zero or grows
unbounded as the network dimension n increases.

Corollary 8: (Asymptotic transition for K = {1} and
T = {n}) Consider the output controllability Gramian (3)
where A is as in (@), and B and C are as in @2). If £ = {1}
and 7 = {n}, then

lim w = > Twd>0 (37)
n—00 0 ifw(A)<0
where w(A) = Amax((A+ AT)/2).
Proof: From Theorem [f] we have
if VK2 —1
lim w={ 0 DA REVE (38)
n—oo 0 if0<a<k+vrZ—1.
where we wused the identity (k4 VK2 — 1)71 =
(n — VK2 — 1). As n — oo, it holds
w(A) =7+ Ba+p/a
_5 (0 —2ka +1). (39)
a

Thus, if w(A) > 0 then a? — 2ka + 1 > 0 which in turn
yields a > k++v/k2 — 1. Conversely, if w(A4) < 0 then o —
2ka+1 < 0 which in turn yields o < k++v/k2 — 1. Equation
(37) now follows from the latter observations and (38). W
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